We show using time-dependent density functional theory (TDDFT) that light can be confined into slot waveguide modes residing between individual atomic layers of coinage metals, such as gold. As the top atomic monolayer lifts a few Å off the underlying bulk Au (111), ab initio electronic structure calculations show that for gaps >1.5 Å, visible light squeezes inside the empty slot underneath, giving optical field distributions 2 Å thick, less than the atomic diameter.
View Article and Find Full Text PDFThe effect of the band structure anisotropy (triangular, square, and hexagonal wrapping) on the electronic collective excitations (plasmons) in a two-dimensional electron gas (2DEG) is studied in the framework of the random-phase approximation. We show that the dynamical dielectric response in these systems strongly depends on the direction of the in-plane momentum transfer . The effect is so pronounced that it results in a different number of electronic collective excitations in some regions, both with - and ∼-like energy dispersions.
View Article and Find Full Text PDFStrong coupling between molecular vibrations and microcavity modes has been demonstrated to modify physical and chemical properties of the molecular material. Here, we study the less explored coupling between lattice vibrations (phonons) and microcavity modes. Embedding thin layers of hexagonal boron nitride (hBN) into classical microcavities, we demonstrate the evolution from weak to ultrastrong phonon-photon coupling when the hBN thickness is increased from a few nanometers to a fully filled cavity.
View Article and Find Full Text PDF