While plastics like polyethylene terephthalate can already be degraded efficiently by the activity of hydrolases, other synthetic polymers like polyurethanes (PUs) and polyamides (PAs) largely resist biodegradation. In this study, we solved the first crystal structure of the metagenomic urethanase UMG-SP-1, identified highly flexible loop regions to comprise active site residues, and targeted a total of 20 potential hot spots by site-saturation mutagenesis. Engineering campaigns yielded variants with single mutations, exhibiting almost 3- and 8-fold improved activity against highly stable N-aryl urethane and amide bonds, respectively.
View Article and Find Full Text PDFPlastics, omnipresent in the environment, have become a global concern due to their durability and limited biodegradability, especially in the form of microparticles and nanoparticles. Polystyrene (PS), a key plastic type, is susceptible to fragmentation and surface alterations induced by environmental factors or industrial processes. With widespread human exposure through pollution and diverse industrial applications, understanding the physiological impact of PS, particularly in nanoparticle form (PS-NPs), is crucial.
View Article and Find Full Text PDFBiofilms are multicellular communities of microbial cells that grow on natural and synthetic surfaces. They have become the major cause for hospital-acquired infections because once they form, they are very difficult to eradicate. Nanotechnology offers means to fight biofilm-associated infections.
View Article and Find Full Text PDFThe study of the platelet receptor integrin αIIbβ3 in a membrane-mimetic environment without interfering signalling pathways is crucial to understand protein structure and dynamics. Our understanding of this receptor and its sequential activation steps has been tremendously progressing using structural and reconstitution approaches in model membranes, such as liposomes or supported-lipid bilayers. For most αIIbβ3 reconstitution approaches, saturated short-chain lipids have been used, which is not reflecting the native platelet cell membrane composition.
View Article and Find Full Text PDFMagnetic nanoparticles have a broad spectrum of biomedical applications including cell separation, diagnostics and therapy. One key issue is little explored: how do the engineered nanoparticles interact with blood components after injection? The formation of bioconjugates in the bloodstream and subsequent reactions are potentially toxic due to the ability to induce an immune response. The understanding of the underlying processes is of major relevance to design not only efficient, but also safe nanoparticles for e.
View Article and Find Full Text PDFDeposits of protein misfolding and/or aggregates are a pathological hallmark of amyloid-related diseases. For instance, insulin amyloid fibril deposits have been observed in patients with insulin-dependent diabetes mellitus after insulin administration. Here, we report on the use of AuNPs functionalized with linear- (i.
View Article and Find Full Text PDFIntegrins are transmembrane proteins involved in hemostasis, wound healing, immunity and cancer. In response to intracellular signals and ligand binding, integrins adopt different conformations: the bent (resting) form; the intermediate extended form; and the ligand-occupied active form. An integrin undergoing such conformational dynamics is the heterodimeric platelet receptor αIIbβ3.
View Article and Find Full Text PDFUnlabelled: Nuclear egress of herpesvirus capsids is mediated by a conserved heterodimeric complex of two viral proteins, designated pUL34 and pUL31 in herpes simplex virus and pseudorabies virus (PrV). pUL34, a tail-anchored membrane protein, is targeted to the nuclear envelope and recruits pUL31 to the inner nuclear membrane (INM) to provide the docking and envelopment machinery for the nascent capsid. While the less conserved C-terminal part of pUL34 is required for correct positioning of the nuclear egress complex (NEC) at the INM, the conserved N-terminal part functions as a docking site for pUL31.
View Article and Find Full Text PDFScaffold-assisted autologous chondrocyte implantation (ACI) is an effective clinical procedure for cartilage repair. The aim of our study was to evaluate the chromosomal stability of human chondrocytes subjected to typical cell culture procedures needed for regenerative approaches in polymer-scaffold-assisted cartilage repair. Chondrocytes derived from post mortem donors and from donors scheduled for ACI were expanded, cryopreserved and re-arranged in polyglycolic acid (PGA)-fibrin scaffolds for tissue culture.
View Article and Find Full Text PDF