Cellular senescence is a state of permanent growth arrest that can ultimately contribute to aging. Senescence can be induced by various stressors and is associated with a myriad of cellular functions and phenotypic markers. Alternative splicing is emerging as a critical contributor to senescence and aging.
View Article and Find Full Text PDFImpaired mitochondrial oxidative phosphorylation (OXPHOS) capacity, accompanied by enhanced glycolysis, is a key metabolic feature of cancer cells, but its underlying mechanism remains unclear. Previously, we reported that human hepatoma cells that harbor OXPHOS defects exhibit high tumor cell invasiveness via elevated claudin-1 (CLN1). In the present study, we show that OXPHOS-defective hepatoma cells (SNU354 and SNU423 cell lines) exhibit reduced expression of mitochondrial ribosomal protein L13 (MRPL13), a mitochondrial ribosome (mitoribosome) subunit, suggesting a ribosomal defect.
View Article and Find Full Text PDFNicotinamide (NAM) plays essential roles in physiology through facilitating NAD redox homeostasis. Importantly, at high doses, it protects cells under oxidative stresses, and has shown therapeutic effectiveness in a variety of disease conditions. In our previous studies, NAM lowered reactive oxygen species (ROS) levels and extended cellular life span in primary human cells.
View Article and Find Full Text PDFAs senescence develops, cells sequentially acquire diverse senescent phenotypes along with simultaneous multistage gene reprogramming. It remains unclear what acts as the key regulator of the collective changes in gene expression at initiation of senescent reprogramming. Here we analyzed time series gene expression profiles obtained in two different senescence models in human diploid fibroblasts: replicative senescence and HO-induced senescence.
View Article and Find Full Text PDFExtracellular matrix (ECM) remodeling dynamically occurs to accommodate adipose tissue expansion during obesity. One non-fibrillar component of ECM, biglycan, is released from the matrix in response to tissue stress; the soluble form of biglycan binds to toll-like receptor 2/4 on macrophages, causing proinflammatory cytokine secretion. To investigate the pattern and regulatory properties of biglycan expression in human adipose tissues in the context of obesity and its related diseases, we recruited 21 non-diabetic obese women, 11 type 2 diabetic obese women, and 59 normal-weight women.
View Article and Find Full Text PDF