Publications by authors named "Umut T Sanli"

Achromatic doublets are combinations of two individual lenses designed to focus different wavelengths of light in the same position. Apochromatic optics are improved versions of the achromatic schemes which extend the wavelength range significantly. Both achromatic and apochromatic optics are well-established for visible light.

View Article and Find Full Text PDF

In a full-field transmission X-ray microscopy (TXM) setup, a condenser X-ray optical element is used to illuminate the sample by condensing the X-ray beam delivered by the synchrotron storage ring. On-going and future upgrades of synchrotron facilities to diffraction-limited storage rings will pose new challenges to these TXM setups, such as much smaller X-ray beams on the condenser. Here, we demonstrate that a refractive axicon can be used as an X-ray beam shaper to match the ring-shaped aperture of the condenser.

View Article and Find Full Text PDF

Diffractive and refractive optical elements have become an integral part of most high-resolution X-ray microscopes. However, they suffer from inherent chromatic aberration. This has to date restricted their use to narrow-bandwidth radiation, essentially limiting such high-resolution X-ray microscopes to high-brightness synchrotron sources.

View Article and Find Full Text PDF

Atomic layer deposition (ALD) is an enabling technology for encapsulating sensitive materials owing to its high-quality, conformal coating capability. Finding the optimum deposition parameters is vital to achieving defect-free layers; however, the high dimensionality of the parameter space makes a systematic study on the improvement of the protective properties of ALD films challenging. Machine-learning (ML) methods are gaining credibility in materials science applications by efficiently addressing these challenges and outperforming conventional techniques.

View Article and Find Full Text PDF

We introduce a single-frame diffractive imaging method called randomized probe imaging (RPI). In RPI, a sample is illuminated by a structured probe field containing speckles smaller than the sample's typical feature size. Quantitative amplitude and phase images are then reconstructed from the resulting far-field diffraction pattern.

View Article and Find Full Text PDF

Magnons have proven to be a promising candidate for low-power wave-based computing. The ability to encode information not only in amplitude but also in phase allows for increased data transmission rates. However, efficiently exciting nanoscale spin waves for a functional device requires sophisticated lithography techniques and therefore, remains a challenge.

View Article and Find Full Text PDF

In many applications of copper in industry and research, copper migration and degradation of metallic copper to its oxides is a common problem. There are numerous ways to overcome this degradation with varying success. Atomic layer deposition (ALD) based encapsulation and passivation of the metallic copper recently emerged as a serious route to success owing to the conformality and density of the ALD films.

View Article and Find Full Text PDF

Focusing X-rays to single nanometer dimensions is impeded by the lack of high-quality, high-resolution optics. Challenges in fabricating high aspect ratio 3D nanostructures limit the quality and the resolution. Multilayer zone plates target this challenge by offering virtually unlimited and freely selectable aspect ratios.

View Article and Find Full Text PDF

Fresnel zone plates (FZP) are diffractive photonic devices used for high-resolution imaging and lithography at short wavelengths. Their fabrication requires nano-machining capabilities with exceptional precision and strict tolerances such as those enabled by modern lithography methods. In particular, ion beam lithography (IBL) is a noteworthy method thanks to its robust direct writing/milling capability.

View Article and Find Full Text PDF

High-performance focusing of X-rays requires the realization of very challenging 3D geometries with nanoscale features, sub-millimeter-scale apertures, and high aspect ratios. A particularly difficult structure is the profile of an ideal zone plate called a kinoform, which is manufactured in nonideal approximated patterns, nonetheless requires complicated multistep fabrication processes. Here, 3D fabrication of high-performance kinoforms with unprecedented aspect ratios out of low-loss plastics using femtosecond two-photon 3D nanoprinting is presented.

View Article and Find Full Text PDF

X-ray microscopy is a successful technique with applications in several key fields. Fresnel zone plates (FZPs) have been the optical elements driving its success, especially in the soft X-ray range. However, focusing of hard X-rays via FZPs remains a challenge.

View Article and Find Full Text PDF