Publications by authors named "Ummu Gulsum Soylemez"

Antimicrobial peptides (AMPs) have drawn the interest of the researchers since they offer an alternative to the traditional antibiotics in the fight against antibiotic resistance and they exhibit additional pharmaceutically significant properties. Recently, computational approaches attemp to reveal how antibacterial activity is determined from a machine learning perspective and they aim to search and find the biological cues or characteristics that control antimicrobial activity via incorporating motif match scores. This study is dedicated to the development of a machine learning framework aimed at devising novel antimicrobial peptide (AMP) sequences potentially effective against Gram-positive /Gram-negative bacteria.

View Article and Find Full Text PDF