Decrease in cognitive performance after sleep deprivation followed by recovery after sleep suggests its key role, and especially non-rapid eye movement (NREM) sleep, in the maintenance of cognition. It remains unknown whether brain network reorganization in NREM sleep stages N2 and N3 can uniquely be mapped onto individual differences in cognitive performance after a recovery nap following sleep deprivation. Using resting state functional magnetic resonance imaging (fMRI), we quantified the integration and segregation of brain networks during NREM sleep stages N2 and N3 while participants took a 1-hour nap following 24-hour sleep deprivation, compared to well-rested wakefulness.
View Article and Find Full Text PDFBackground: Cognitive control has been strongly linked to midfrontal theta (4-8 Hz) brain activity. Such control processes are known to be impaired in individuals with psychiatric conditions and neurodevelopmental diagnoses, including attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). Temporal variability in theta, in particular, has been associated with ADHD, with shared genetic variance underlying the relationship.
View Article and Find Full Text PDFBackground: Atypicalities in perception and interpretation of faces and emotional facial expressions have been reported in both autism and attention-deficit/hyperactivity disorder (ADHD) during childhood and adulthood. Investigation of face processing during young adulthood (18 to 25 years), a transition period to full-fledged adulthood, could provide important information on the adult outcomes of autism and ADHD.
Methods: In this study, we investigated event-related potentials (ERPs) related to visual face processing in autism, ADHD, and co-occurring autism and ADHD in a large sample of young adults ( = 566).
Curr Top Behav Neurosci
August 2022
Electrophysiological recording methods, including electroencephalography (EEG) and magnetoencephalography (MEG), have an unparalleled capacity to provide insights into the timing and frequency (spectral) composition of rapidly changing neural activity associated with various cognitive processes. The current chapter provides an overview of EEG studies examining alterations in brain activity in ADHD, measured both at rest and during cognitive tasks. While EEG resting state studies of ADHD indicate no universal alterations in the disorder, event-related studies reveal consistent deficits in attentional and inhibitory control and consequently inform the proposed cognitive models of ADHD.
View Article and Find Full Text PDFFunctional near-infrared spectroscopy (fNIRS) measures the hemoglobin concentration changes associated with neuronal activity. Diffuse optical tomography (DOT) consists of reconstructing the optical density changes measured from scalp channels to the oxy-/deoxy-hemoglobin concentration changes within the cortical regions. In the present study, we adapted a nonlinear source localization method developed and validated in the context of Electro- and Magneto-Encephalography (EEG/MEG): the Maximum Entropy on the Mean (MEM), to solve the inverse problem of DOT reconstruction.
View Article and Find Full Text PDFSleep deprivation (SD) leads to impairments in cognitive function. Here, we tested the hypothesis that cognitive changes in the sleep-deprived brain can be explained by information processing within and between large-scale cortical networks. We acquired functional magnetic resonance imaging (fMRI) scans of 20 healthy volunteers during attention and executive tasks following a regular night of sleep, a night of SD, and a recovery nap containing nonrapid eye movement (NREM) sleep.
View Article and Find Full Text PDFIn the present study, we proposed and evaluated a workflow of personalized near infra-red optical tomography (NIROT) using functional near-infrared spectroscopy (fNIRS) for spatiotemporal imaging of cortical hemodynamic fluctuations. The proposed workflow from fNIRS data acquisition to local 3D reconstruction consists of: (a) the personalized optimal montage maximizing fNIRS channel sensitivity to a predefined targeted brain region; (b) the optimized fNIRS data acquisition involving installation of optodes and digitalization of their positions using a neuronavigation system; and (c) the 3D local reconstruction using maximum entropy on the mean (MEM) to accurately estimate the location and spatial extent of fNIRS hemodynamic fluctuations along the cortical surface. The workflow was evaluated on finger-tapping fNIRS data acquired from 10 healthy subjects for whom we estimated the reconstructed NIROT spatiotemporal images and compared with functional magnetic resonance imaging (fMRI) results from the same individuals.
View Article and Find Full Text PDFSimultaneous recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) is a very promising non-invasive neuroimaging technique. However, EEG data obtained from the simultaneous EEG-fMRI are strongly influenced by MRI-related artefacts, namely gradient artefacts (GA) and ballistocardiogram (BCG) artefacts. When compared to the GA correction, the BCG correction is more challenging to remove due to its inherent variabilities and dynamic changes over time.
View Article and Find Full Text PDFComput Methods Programs Biomed
March 2021
Background And Objective: The human brain displays rich and complex patterns of interaction within and among brain networks that involve both cortical and subcortical brain regions. Due to the limited spatial resolution of surface electroencephalography (EEG), EEG source imaging is used to reconstruct brain sources and investigate their spatial and temporal dynamics. The majority of EEG source imaging methods fail to detect activity from subcortical brain structures.
View Article and Find Full Text PDFSleep deprivation leads to significant impairments in cognitive performance and changes to the interactions between large scale cortical networks, yet the hierarchical organization of cortical activity across states is still being explored. We used functional magnetic resonance imaging to assess activations and connectivity during cognitive tasks in 20 healthy young adults, during three states: (i) following a normal night of sleep, (ii) following 24hr of total sleep deprivation, and (iii) after a morning recovery nap. Situating cortical activity during cognitive tasks along hierarchical organizing gradients based upon similarity of functional connectivity patterns, we found that regional variations in task-activations were captured by an axis differentiating areas involved in executive control from default mode regions and paralimbic cortex.
View Article and Find Full Text PDFSkull conductivity has a substantial influence on EEG and combined EEG and MEG source analysis as well as on optimized transcranial electric stimulation. To overcome the use of standard literature values, we propose a non-invasive two-level calibration procedure to estimate skull conductivity individually in a group study with twenty healthy adults. Our procedure requires only an additional run of combined somatosensory evoked potential and field data, which can be easily integrated in EEG/MEG experiments.
View Article and Find Full Text PDFObjectives: Laparoscopic surgery has numerous advantages over open surgery in view of postoperative pain. In this context, to elevate its benefits and patient satisfaction, different pain management interventions have been used so far. This study aimed to evaluate the effect of bupivacaine injection to trocar sites following laparoscopic hysterectomy for the management of postoperative pain.
View Article and Find Full Text PDFSource localization of interictal epileptiform discharges (IEDs) is clinically useful in the presurgical workup of epilepsy patients. We aimed to compare the performance of four different distributed magnetic source imaging (dMSI) approaches: Minimum norm estimate (MNE), dynamic statistical parametric mapping (dSPM), standardized low-resolution electromagnetic tomography (sLORETA), and coherent maximum entropy on the mean (cMEM). We also evaluated whether a simple average of maps obtained from multiple inverse solutions (Ave) can improve localization accuracy.
View Article and Find Full Text PDFObjective: Focal epilepsy is a disorder affecting several brain networks; however, epilepsy surgery usually targets a restricted region, the so-called epileptic focus. There is a growing interest in embedding resting state (RS) connectivity analysis into pre-surgical workup.
Approach: In this retrospective study, we analyzed Magnetoencephalography (MEG) long-range RS functional connectivity patterns in patients with drug-resistant focal epilepsy.
Reliable EEG source analysis depends on sufficiently detailed and accurate head models. In this study, we investigate how uncertainties inherent to the experimentally determined conductivity values of the different conductive compartments influence the results of EEG source analysis. In a single source scenario, the superficial and focal somatosensory P20/N20 component, we analyze the influence of varying conductivities on dipole reconstructions using a generalized polynomial chaos (gPC) approach.
View Article and Find Full Text PDFIncreased thyroid gland volume (TV) may bring about tracheal compression, which is one of the causes of respiratory distress. The aim of this study was to investigate the relationship between TV and the severity of tracheal compression independent of patients' symptoms using semiautomated three-dimensional (3D) volumetry (S3DV) reconstructed from computed tomography (CT) scans. Cut-off TVs leading to different levels of tracheal narrowing were evaluated.
View Article and Find Full Text PDFObjective: An abscess of the tongue base is rare, but it can be a potentially life-threatening situation in elderly patients.
Case Report: A 72-year-old male patient presented with mid-anterior neck swelling, odynophagia, poor oral hygiene and severe dyspnoea. After a difficult intubation, the muscles were dissected via a submental suprahyoid approach and the abscess was drained.
Background/aim: The aim of this study was to validate the Turkish Nasal Obstruction Symptom Evaluation (T-NOSE) scale. Materials and methods: The NOSE scale was translated into Turkish. A prospective study was conducted involving adult subjects with nasal obstruction and a control group.
View Article and Find Full Text PDFFusion of electroencephalography (EEG) and magnetoencephalography (MEG) data using maximum entropy on the mean method (MEM-fusion) takes advantage of the complementarities between EEG and MEG to improve localization accuracy. Simulation studies demonstrated MEM-fusion to be robust especially in noisy conditions such as single spike source localizations (SSSL). Our objective was to assess the reliability of SSSL using MEM-fusion on clinical data.
View Article and Find Full Text PDF