Worldwide, climate change adaptation in coastal areas is a growing challenge. The most common solutions such as seawalls and breakwaters are expensive and often lead to unexpected disastrous effects on the neighboring unprotected areas. In recent years, this awareness has guided coastal managers to adopt alternative solutions with lower environmental impact to protect coastal areas, defined as Nature-Based Solutions (NBSs).
View Article and Find Full Text PDFIn this paper we demonstrate a novel framework for assessing nature-based solutions (NBSs) in coastal zones using a new suite of numerical models that provide a virtual "replica" of the natural environment. We design experiments that use a Digital Twin strategy to establish the wave, sea level and current attenuation due to seagrass NBSs. This Digital Twin modelling framework allows us to answer "what if" scenario questions such as: (i) are indigenous seagrass meadows able to reduce the energy of storm surges, and if so how? (ii) what are the best seagrass types and their landscaping for optimal wave and current attenuation? An important result of the study is to show that the landscaping of seagrasses is an important design choice and that seagrass does not directly attenuate the sea level but the current amplitudes.
View Article and Find Full Text PDF