Publications by authors named "Umesh Goyal"

Background: Due to their immunomodulatory and trophic support functions, mesenchymal stem cells (MSCs) are promising in the field of cell-based regenerative medicine. However, MSC survival post-transplantation is challenged by various microenvironment stress factors. Here, we investigated the role of vitronectin (VTN) in the survival strategy of MSCs under serum deprivation stress condition.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) are multipotent precursor cells which have been isolated from different vascularized tissue sources. Due to their paracrine function of secreting trophic and immunomodulatory molecules, MSCs are successfully used in cell-based transplantations and provide an alternative medical paradigm for treating a variety of devastating disorders. Umbilical cord is a medical waste with a large, readily available donor pool.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) are successful for their therapeutic application in immune and inflammatory contexts due to their anti-inflammatory, trophic, and immunomodulatory roles. However, though MSCs have the potential to provide regenerative treatment toward a wide range of devastating diseases, massive cell death of transplanted MSCs remains an obstacle to overcome. The relation between MSCs and inflammation is multifactorial and challenging to comprehend.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) are currently considered as 'medicinal signaling cells' and a promising resource in regard to cell-based regenerative therapy. Umbilical cord is a human term perinatal tissue which is easily attainable, and a promising source of stem cells with no associated ethical concerns. MSCs have been isolated from different regions of the umbilical cord and Wharton's jelly (WJ) is the gelatinous matrix that surrounds and provides protection to the umbilical cord blood vessels.

View Article and Find Full Text PDF

The efficacy of mesenchymal stem cell (MSC) therapy is currently limited by low retention and poor survival of transplanted cells as demonstrated by clinical studies. This is mainly due to the harsh microenvironment created by oxygen and nutrient deprivation and inflammation at the injured sites. The choice of MSC source could be critical in determining fate and cellular function of MSCs under stress.

View Article and Find Full Text PDF