Chronic obstructive pulmonary disease (COPD) is the third leading cause of mortality globally and the risk of developing lung cancer is six times greater in individuals with COPD who smoke compared to those who do not smoke. Matrix metalloproteinases (MMPs) play a crucial role in the pathophysiology of respiratory diseases by promoting inflammation and tissue degradation. Furthermore, MMPs are involved in key processes like epithelial-to-mesenchymal transition (EMT), metastasis, and invasion in lung cancer.
View Article and Find Full Text PDFThis study presents an innovative approach for targeted drug delivery through the development of Glycyrrhizic acid-loaded zein nanoparticles (GA-LNPs) as a proficient carrier system. The juxtaposition of zein, a hydrophobic biological macromolecule as a protein carrier, and Glycyrrhizic acid (GA), a hydrophilic therapeutic compound, exemplifies the adaptability of hydrocolloids within cutting-edge drug delivery systems. The characterization and functional traits of research encompass multifaceted analyses of natural macromolecules, which elucidate the homogeneous and spherical morphology of GA-LNPs with an average size of 170.
View Article and Find Full Text PDFBreast cancer is a major cause of death in women worldwide leading to requirement of new therapeutic strategies. Silymarin demonstrated the anti-cancer activity however, due to low bioavailability its use is restricted. This study aimed to improve the solubility of silymarin by developing a silymarin loaded zein nanoparticles (SLNPs) which was stabilized by beta cyclodextrin.
View Article and Find Full Text PDFExtracellular signal-regulated kinase (Erk)-5 is a key mediator of endothelial cell homeostasis, and its inhibition causes loss of critical endothelial markers leading to endothelial dysfunction (ED). Circulating oxidized low-density lipoprotein (oxLDL) has been identified as an underlying cause of ED and atherosclerosis in metabolic disorders. Silymarin (Sym), a flavonolignan, possesses various pharmacological activities however its preventive mechanism in ED warrants further investigation.
View Article and Find Full Text PDFIn the cutting-edge era of developing precision therapeutics, nanoparticles have emerged as a potent drug delivery system. Altering the size of poorly water-soluble drugs to nanoscale could confer change in their physical properties, including enhanced water solubility and bioavailability. Evodiamine (EVO), a natural indolequinone alkaloid extract from Evodia rutaecarpa, has shown several important pharmacological applications, anti-cancer being one of them.
View Article and Find Full Text PDFGalectin-3 (Gal-3), a multifunctional carbohydrate-binding lectin, has emerged as a key player in various biological processes including inflammation, cancer, cardiovascular diseases and fibrotic disorders, however it remains unclear if Gal-3 is a bystander or drives lung tissue remodeling (LTR). Persistent exposure to cigarette smoke (CS) is the leading cause of oxidative and inflammatory damage to the lung tissues. CS-induced pathological increase in Gal-3 expression has been implicated in the pathogenesis of various respiratory conditions, such as chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and lung cancer.
View Article and Find Full Text PDFCordycepin gets rapidly metabolized in the body into inactive form due to its structural similarity to adenosine, thus inhibiting its development as a medicinal agent. This study was aimed to improve the solubility and stability of cordycepin, a potential drug with known antiproliferative activity, by encapsulating it in bovine serum albumin: β-cyclodextrin nanoparticles. Cordycepin-loaded nanoparticles (CLNPs) were synthesized using the antisolvent method and characterized thoroughly using various techniques.
View Article and Find Full Text PDFBreast cancer (BC) incidence and associated mortality have increased in tandem with the growth in obesity among the females worldwide. An adipokine, visfatin, has been shown to potentially impact glucose, lipid, and protein metabolism, and promote cancer growth however, the mechanism underlying the effect of visfatin on lipid metabolism dysregulation contributing to BC cell survival, proliferation, and metastasis has not been elucidated. Herein, we have investigated the role of visfatin on the induction of Sterol regulatory element binding protein (SREBP-1) and its upstream and downstream mediators in MCF-7 breast cancer cells.
View Article and Find Full Text PDFAims: An elevated level of galectin-3, a carbohydrate-binding lectin implicated in tumorigenesis, metastasis, and epithelial-mesenchymal transition (EMT), has been found in cigarette smokers. However, the regulation of its expression and role in the pathogenesis of CS-induced EMT and lung cancer metastasis is unclear. Here, we have investigated the mechanism of CS-induced and galectin-3-mediated EMT in airway epithelial cells (AECs).
View Article and Find Full Text PDFObesity has reached a pandemic proportion and is responsible for the augmentation of multimorbidity including certain cancers. With the rise in obesity amongst the female population globally, a concomitant increase in breast cancer (BC) incidence and related mortality has been observed. In the present review, we have elucidated the cellular and molecular insight into the visfatin-mediated cellular plasticity programs such as Epithelial to mesenchymal transition (EMT) and Endothelial to mesenchymal transition (EndoMT), and stemness-associated changes in BC cells.
View Article and Find Full Text PDFIn this study, for the first time, we have used juice to synthesize dihydropyrimidine (DHPM) derivatives the Biginelli reaction, which showed better yield, shorter reaction time, and did not require an organic solvent for the reaction. A series of DHPM derivatives were synthesized, and characterized, and structural analysis was achieved through SCXRD & Hirshfeld surface analysis. We observed that these synthesized dihydropyrimidine (DHPM) derivatives showed C-H⋯π, C-H⋯O, C-H⋯N, C-H⋯C, lone pair⋯π, π⋯π, interactions.
View Article and Find Full Text PDFAirway epithelial cells arrayed in the inner lining of the airways of the lung are believed to be the major source for the development of malignancy of the lung. The advent of in vitro cell culture model made it easy to understand the molecular mechanism of carcinogenesis at a cellular level, where the airway epithelial cells are cultured on a 2D surface submerged in the culture media. However, this method of culturing airway epithelial cells does not reflect their true nature, and thus results obtained have their limitations.
View Article and Find Full Text PDFSmoking tobacco is a major risk factor for the development of lung cancer, COPD, and other lung pathologies in smokers. Cigarette smoke (CS), which is comprised of several toxic components, is known to cause oxidative stress and inflammation-induced lung damage. Since airway epithelial cells act as the primary barrier, they protect the lung tissues from environmental insults, including CS.
View Article and Find Full Text PDFCigarette smoke exposure leads to upregulation of cyclooxygenase-2 (COX-2), an inducible enzyme that synthesizes prostaglandin E2 (PGE2) and promotes airway inflammation. COX-2 overexpression is frequently implicated in inflammation, invasion, metastasis, and epithelial-mesenchymal transition (EMT). However, its detailed molecular mechanism in cigarette smoke induced EMT is not clear.
View Article and Find Full Text PDFJ Cardiovasc Pharmacol
November 2021
Foam cell formation is an important event in atherosclerosis. Fisetin, a bioflavonoid, has been identified to possess anti-inflammatory, antilipidemic, and anticancerous properties; however, its role as a lipid homeostasis regulator in macrophages, specifically in the presence of metabolic stressors such as oxidized low-density lipoprotein (oxLDL) is not well understood. In this study, we have investigated the role of fisetin in preventing oxLDL-induced macrophage foam cell formation.
View Article and Find Full Text PDFWhile the vaccination is now available to many countries and will slowly dissipate to others, effective therapeutics for COVID-19 is still illusive. The SARS-CoV-2 pandemic has posed an unprecedented challenge to researchers, scientists, and clinicians and affected the wellbeing of millions of people worldwide. Since the beginning of the pandemic, a multitude of existing anti-viral, antibiotic, antimalarial, and anticancer drugs have been tested, and some have shown potency in the treatment and management of COVID-19, albeit others failed to leave any positive impact and a few also became controversial as they showed mixed clinical outcomes.
View Article and Find Full Text PDFThe uncertainty related to prevention and treatment of Coronavirus disease 2019 due to lack of effective vaccine candidates or drug molecules has resulted in extensive spread of infection and mortality worldwide. Although the asymptomatic or mild patients are becoming healthy with regular over-the-counter medicines and proper rest and care, for the severe patients, in the absence of definite cure, different drug combinations are being used to treat on trial basis without the assurance of efficacy and safety. This scenario has however changed now with some medicines including antiviral Remdesivir and Favipiravir and anti-inflammatory drugs like dexamethasone and tocilizumab which have shown some positive results in trials such as decreasing need of mechanical or non-invasive ventilation or mortality.
View Article and Find Full Text PDFBlack berry () fruit is useful in curing diabetic complications; however, its role in diabetes-induced cardiomyopathy is not yet known. In this study, we investigated the regulation of gelatinase-B (MMP-9) by methanol seed extract (MSE) in diabetic cardiomyopathy using real-time PCR, RT-PCR, immunocytochemistry, gel diffusion assay, and substrate zymography. The regulatory effects of MSE on NF-B, TNF-, and IL-6 were also examined.
View Article and Find Full Text PDFWith the global spread of SARS-CoV-2, millions of people have been affected leading to the declaration of coronavirus disease 2019 (COVID-19) as a pandemic by the WHO. Several studies have linked the severity of COVID-19 cases and increased fatality in patients with obesity and other comorbid conditions such as diabetes, cardiovascular diseases, hypertension, and kidney disease. Obesity, a metabolically deranged condition, establishes a low-grade chronic inflammation in the body, which affects different organs and promotes the development of several other diseases.
View Article and Find Full Text PDFObjective: Cysteinyl leukotrienes (CysLTs), a group of inflammatory lipid mediators, are found elevated in obese-asthmatic patients. Leukotriene D (LTD), a representative CysLT, is implicated in promoting lung inflammation and remodelling in allergic asthma, but its role in non-allergic asthma, especially in obese-asthmatic patients, is not known. Here, using primary human small airway epithelial cells (SAECs) we have investigated the mechanism of LTD-induced inflammation and remodelling and assessed high proneness of obese mice to develop asthma upon challenge with allergen ovalbumin (OVA).
View Article and Find Full Text PDFCarvacrol (CV), a monoterpene possesses wide range of biological activities but has limited application due to low aqueous solubility and poor bioavailability. To address this issue and enhance bioavailability and efficacy of carvacrol, lecithin stabilized zein nanoparticles were investigated. Precipitation method was used for synthesis of nanoparticles and characterized using various techniques.
View Article and Find Full Text PDFIn the past decade, naturally occurring phytoconstituents have emerged as potential therapeutic agents and alternative to synthetic drugs. However, efficient delivery of hydrophobic phytoconstituents into the body with desired therapeutic efficacy is a key challenge for the pharmaceutical industries due to their insolubility in water and low oral bioavailability. Nanosuspension formulations have shown promises to improve the delivery of the hydrophobic molecules with simultaneously avoiding the drawbacks like carrier toxicity and scale-up issues of other nanotechnology-based drug delivery systems.
View Article and Find Full Text PDF