Publications by authors named "Umer Younis"

Silicon-based chemical sensors are optimal for detecting biological entities due to their fast response, biocompatibility, and non-invasive nature. In this work, we proposed pristine and metal [gold (Au) and tungsten (W)]-doped pentagonal silicene (p-Si) and pentagraphene (PG) as materials for single DNA nucleobase sensors. Using first-principles calculations, we presented a comparative study of DNA nucleobases-adenine (A), guanine (G), cytosine (C), and thymine (T)-adsorbed on pristine and metal-doped PG and p-Si to determine their potential as nucleobase detectors or for detecting other chemical species.

View Article and Find Full Text PDF

In this work, we design a van der Waals heterojunction composed of semiconducting penta-PdPSe and semi-metallic graphene (G) monolayers based on state-of-the-art theoretical calculations. Our results show that both monolayers well preserve their intrinsic features and possess an n-type near Ohmic Schottky contact with a low Schottky barrier height of 0.085 eV for the electrons at the vertical interface.

View Article and Find Full Text PDF

The development of anode materials is critical to the success of sodium ion batteries (SIBs). Because of the size difference between Li and Na, the commercial anode material graphite in Li-ion batteries does not work for Na-ion batteries. Thus, it will be ideal if some universal anode materials could work for both Li- and Na-ion batteries with high performance.

View Article and Find Full Text PDF

The structural stabilities and electronic properties are studied for the recently synthesized one-dimensional (1-D) tetracene-based nanoribbons with four-membered rings by using first-principles calculation. All three configurations (named as straight, zigzag, and armchair) are stable and exhibit an indirect band gap of 1.46, 0.

View Article and Find Full Text PDF

Motivated by the feasibility of hybridizing C- and BN-units as well as the recent synthesis of a triphenylene-graphdiyne (TpG) monolayer, for the first time we explore the stability and electronic band structure of the Tp-BNyne monolayer composed of C-chains and the BN analog of triphenylene (Tp-BNyne) by using density functional theory. We find that the single layer Tp-BNyne is stable and exhibits a semiconducting character with a direct band gap of 3.78 eV.

View Article and Find Full Text PDF