Dep domain containing mTOR interacting protein (DEPTOR) has critical implications in the development and progression of human malignancies. Increased expression of DEPTOR promotes the growth of tumor cells by inhibiting the mTORC1, which alleviates the negative feedback inhibition by mTORC1 downstream target S6Ks on PI3K/AKT pathway thereby promotes cell survival and prevents apoptosis. This clearly suggests that targetting DEPTOR-mTOR interactions through small molecules may prove as an effective strategy for circumventing distinct cancers.
View Article and Find Full Text PDFTumor-associated macrophages (TAMs) play a pivotal role in facilitating tumor growth and metastasis. This tumor-promoting propensity of TAMs sets in as a result of their complex cross-talk with tumor cells mediated primarily by tumor cell-secreted proteins in the tumor microenvironment. To explore such interactions, we employed an immunoscreening approach involving the immunization of Balb-c mice with model human lung carcinoma cell line, A549.
View Article and Find Full Text PDFThe overexploitation of medicinal plants is depleting gene pool at an alarming rate. In this scenario inducing the genetic variability through targeted mutations could be beneficial in generating varieties with increased content of active compounds. The present study aimed to develop a reproducible protocol for in vitro multiplication and mutagenesis of Hyoscyamus niger targeting putrescine N-methyltransferase (PMT) and 6β-hydroxy hyoscyamine (H6H) genes of alkaloid biosynthetic pathway.
View Article and Find Full Text PDF