Publications by authors named "Umender Sharma"

Buruli Ulcer (BU) is a cutaneous disease caused by Mycobacterium ulcerans. The pathogenesis of this disease is closely related to the secretion of the toxin mycolactone that induces extensive destruction of the skin and soft tissues. Currently, there are no effective measures to prevent the disease and, despite availability of antibiotherapy and surgical treatments, these therapeutic options are often associated with severe side effects.

View Article and Find Full Text PDF

Purpose: P128, a phage-derived lysin, exerts antibacterial activity on staphylococci by cleaving the pentaglycine-bridge of peptidoglycan. We sought to determine whether the presence of P128 could re-sensitize drug-resistant bacteria to antibiotics by virtue of its cell wall degrading property.

Methodology: P128 was tested in combination with standard-of-care (SoC) drugs by chequerboard assays on planktonic cells and biofilms of strains individually resistant to these drugs.

View Article and Find Full Text PDF

Bacterial biofilms are highly resistant to the action of antibiotics. Presence of persisters, phenotypically resistant populations of bacterial cells, is thought to contribute toward recalcitrance of biofilms. The phage-derived lysins, by virtue of their ability to cleave the peptidoglycan of bacterial cells in an enzymatic manner, have the unique ability to kill dormant cells.

View Article and Find Full Text PDF

Coagulase-negative staphylococci (CoNS) are the major causative agents of foreign-body-related infections, including catheter-related bloodstream infections. Because of the involvement of biofilms, foreign-body-related infections are difficult to treat. P128, a chimeric recombinant phage-derived ectolysin, has been shown to possess bactericidal activity on strains of , including methicillin-resistant (MRSA).

View Article and Find Full Text PDF

P128 is an antistaphylococcal protein, comprising a cell wall-degrading enzymatic region and a Staphylococcus-specific binding region, which possesses specific and potent bactericidal activity against sensitive and drug-resistant strains of Staphylococcus aureus To explore P128's ability to kill S. aureus in a range of environments relevant to clinical infection, we investigated the anti-S. aureus activity of P128 alone and in combination with standard-of-care antibiotics on planktonic and biofilm-embedded cells.

View Article and Find Full Text PDF

Conditional expression strains serve as a valuable tool to study the essentiality and to establish the vulnerability of a target under investigation in a drug discovery program. While essentiality implies an absolute requirement of a target function, vulnerability provides valuable information on the extent to which a target function needs to be depleted to achieve bacterial growth inhibition followed by cell death. The critical feature of an ideal conditional expression system is its ability to tightly regulate gene expression to achieve the full spectrum spanning from a high level of expression in order to support growth and near zero level of expression to mimic conditions of gene knockout.

View Article and Find Full Text PDF

DNA topoisomerases perform the essential function of maintaining DNA topology in prokaryotes. DNA gyrase, an essential enzyme that introduces negative supercoils, is a clinically validated target. However, topoisomerase I (Topo I), an enzyme responsible for DNA relaxation has received less attention as an antibacterial target, probably due to the ambiguity over its essentiality in many organisms.

View Article and Find Full Text PDF

Glutamate racemase (MurI) converts l-glutamate into d-glutamate which is an essential component of peptidoglycan in bacteria. The gene encoding glutamate racemase, murI has been shown to be essential for the growth of a number of bacterial species including Escherichia coli. However, in some Gram-positive species d-amino acid transaminase (Dat) can also convert l-glutamate into d-glutamate thus rendering MurI non-essential for growth.

View Article and Find Full Text PDF

Most bacteria are able to generate sufficient amounts of ATP from substrate level phosphorylation, thus rendering the respiratory oxidative phosphorylation non-critical. In mycobacteria, including Mycobacterium tuberculosis, ATP generation by oxidative phosphorylation is an essential process. Of the two types of NADH dehydrogenases (type I and type II), the type II NADH dehydrogenase (Ndh) which is inhibited by phenothiazines has been thought to be essential.

View Article and Find Full Text PDF

P128 is an anti-staphylococcal protein consisting of the Staphylococcus aureus phage-K-derived tail-associated muralytic enzyme (TAME) catalytic domain (Lys16) fused with the cell-wall-binding SH3b domain of lysostaphin. In order to understand the mechanism of action and emergence of resistance to P128, we isolated mutants of Staphylococcus spp., including meticillin-resistant Staphylococcus aureus (MRSA), resistant to P128.

View Article and Find Full Text PDF

DNA gyrase is a clinically validated target for developing drugs against Mycobacterium tuberculosis (Mtb). Despite the promise of fluoroquinolones (FQs) as anti-tuberculosis drugs, the prevalence of pre-existing resistance to FQs is likely to restrict their clinical value. We describe a novel class of N-linked aminopiperidinyl alkyl quinolones and naphthyridones that kills Mtb by inhibiting the DNA gyrase activity.

View Article and Find Full Text PDF

Coenzyme A biosynthesis pathway proteins are potential targets for developing inhibitors against bacteria including Mycobacterium tuberculosis. We have evaluated two enzymes in this pathway: phosphopantetheine adenylyltransferase (CoaD) and dephospho CoA kinase (CoaE) for essentiality and selectivity. Based on the previous transposon mutagenesis studies, coaD had been predicted to be a non-essential gene in M.

View Article and Find Full Text PDF

Introduction: Target driven drug discovery is a long and arduous task requiring a huge investment of time, energy and resources. Therefore, it is very important to select targets which provide the maximum chance of obtaining inhibitors that will be efficacious in animal models and finally in tuberculosis (TB) patients.

Areas Covered: The article discusses the necessity for new targets in Mycobacterium tuberculosis (Mtb) drug discovery and how the functional redundancy of putative targets in Mtb adds a new dimension to the complexity of validation.

View Article and Find Full Text PDF

Active efflux of drugs mediated by efflux pumps that confer drug resistance is one of the mechanisms developed by bacteria to counter the adverse effects of antibiotics and chemicals. To understand these efflux mechanisms in Mycobacterium tuberculosis, we generated knockout (KO) mutants of four efflux pumps of the pathogen belonging to different classes. We measured the MICs and kill values of two different compound classes on the wild type (WT) and the efflux pump (EP) KO mutants in the presence and absence of the efflux inhibitors verapamil and l-phenylalanyl-l-arginyl-β-naphthylamide (PAβN).

View Article and Find Full Text PDF

Alanine racemase (Alr) is an essential enzyme in most bacteria; however, some species (e.g. Listeria monocytogenes) can utilize d-amino acid transaminase (Dat) to generate d-alanine, which renders Alr non-essential.

View Article and Find Full Text PDF

Efflux systems are important in determining the efficacy of antibiotics used in the treatment of bacterial infections. In the last decade much attention has been paid to studying the efflux pumps of mycobacteria. New classes of compounds are under investigation for development into potential candidate drugs for the treatment of tuberculosis.

View Article and Find Full Text PDF

Pantothenate kinase, an essential enzyme in bacteria and eukaryotes, is involved in catalysing the first step of conversion of pantothenate to coenzyme A (CoA). Three isoforms (type I, II and III) of this enzyme have been reported from various organisms, which can be differentiated from each other on the basis of their biochemical and structural characteristics. Though most bacteria carry only one of the isoforms of pantothenate kinases, some of them possess two isoforms.

View Article and Find Full Text PDF

During active growth of Escherichia coli, majority of the transcriptional activity is carried out by the housekeeping sigma factor (sigma(70)), whose association with core RNAP is generally favoured because of its higher intracellular level and higher affinity to core RNAP. In order to facilitate transcription by alternative sigma factors during nutrient starvation, the bacterial cell uses multiple strategies by which the transcriptional ability of sigma(70) is diminished in a reversible manner. The facilitators of shifting the balance in favour of alternative sigma factors happen to be as diverse as a small molecule (p)ppGpp (represents ppGpp or pppGpp), proteins (DksA, Rsd) and a species of RNA (6S RNA).

View Article and Find Full Text PDF

Acetohydroxyacid synthase (AHAS) is the first enzyme in the branched-chain amino acid biosynthesis pathway in bacteria. Bioinformatics analysis revealed that the Mycobacterium tuberculosis genome contains four genes (ilvB1, ilvB2, ilvG and ilvX) coding for the large catalytic subunit of AHAS, whereas only one gene (ilvN or ilvH) coding for the smaller regulatory subunit of this enzyme was found. In order to understand the physiological role of AHAS in survival of the organism in vitro and in vivo, we inactivated the ilvB1 gene of M.

View Article and Find Full Text PDF

Anti-sigma factors Escherichia coli Rsd and bacteriophage T4 AsiA bind to the essential housekeeping sigma factor, sigma(70), of E. coli. Though both factors are known to interact with the C-terminal region of sigma(70), the physiological consequences of these interactions are very different.

View Article and Find Full Text PDF

RNA polymerase (RNAP) is a well-validated target for the development of antibacterial and antituberculosis agents. Because the purification of large quantities of native RNA polymerase from pathogenic mycobacteria is hazardous and cumbersome, the primary screening was carried out using Escherichia coli RNAP. The authors have developed a high-throughput screening (HTS) assay to screen for novel inhibitors of RNAP.

View Article and Find Full Text PDF

The T4 AsiA is an anti-sigma factor encoded by one of the early genes of Bacteriophage T4. It has been shown that AsiA inhibits transcription from promoters containing -10 and -35 consensus sequence by binding to sigma(70) of E. coli.

View Article and Find Full Text PDF

The T4 AsiA is an anti-sigma factor encoded by an early gene of bacteriophage T4. AsiA has been shown to inhibit T4 early promoters in vitro and expression of this protein from a plasmid causes transcriptional shut off in the host cells leading to cell death. By reasoning that mutant AsiA expression in Escherichia coli will not inhibit the host transcription and hence lead to healthy colony formation, a strategy was developed wherein inactive or partially active mutants of AsiA could be isolated.

View Article and Find Full Text PDF