Publications by authors named "Ume-Kulsoom Shah"

Chemical safety testing plays a crucial role in product and pharmacological development, as well as chemoprevention; however, in vitro genotoxicity safety tests do not always accurately predict the chemicals that will be in vivo carcinogens. If chemicals test positive in vitro for genotoxicity but negative in vivo, this can contribute to unnecessary testing in animals used to confirm erroneous in vitro positive results. Current in vitro tests typically evaluate only genotoxicity endpoints, which limits their potential to detect non-genotoxic carcinogens.

View Article and Find Full Text PDF

To reduce, replace, and refine in vivo testing, there is increasing emphasis on the development of more physiologically relevant in vitro test systems to improve the reliability of non-animal-based methods for hazard assessment. When developing new approach methodologies, it is important to standardize the protocols and demonstrate the methods can be reproduced by multiple laboratories. The aim of this study was to assess the transferability and reproducibility of two advanced in vitro liver models, the Primary Human multicellular microtissue liver model (PHH) and the 3D HepG2 Spheroid Model, for nanomaterial (NM) and chemical hazard assessment purposes.

View Article and Find Full Text PDF

Background: With the continued integration of engineered nanomaterials (ENMs) into everyday applications, it is important to understand their potential for inducing adverse human health effects. However, standard in vitro hazard characterisation approaches suffer limitations for evaluating ENM and so it is imperative to determine these potential hazards under more physiologically relevant and realistic exposure scenarios in target organ systems, to minimise the necessity for in vivo testing. The aim of this study was to determine if acute (24 h) and prolonged (120 h) exposures to five ENMs (TiO, ZnO, Ag, BaSO and CeO) would have a significantly different toxicological outcome (cytotoxicity, (pro-)inflammatory and genotoxic response) upon 3D human HepG2 liver spheroids.

View Article and Find Full Text PDF

In this study, we have studied the cytotoxicity and genotoxic potency of 3 pro-oxidants; H2O2, menadione and KBrO3 in different dosing scenarios, namely acute (1-day dosing) and chronic (5-days). For this purpose, relative population doubling (RPD%) and mononucleated micronucleus (MN) test were used. TK6 cells and NH32 were employed in in vitro experiments.

View Article and Find Full Text PDF

In vitro genotoxicity studies are a quick and high throughput approach to assess the genotoxic potential of chemicals; however, the reliability of these tests and their relevance to in vivo effects depends on the choice of representative cell line and optimisation of assay conditions. For chemicals like urethane that require specific metabolic activation to cause genotoxicity, it is important that in vitro tests are conducted using cell lines exhibiting the activity and induction of CYP450 enzymes, including CYP2E1 enzyme that is important in the metabolism of urethane, at a concentration representing actual or perceived chemical exposure. We compared 2D MCL-5 cells and HepG2 cells with 3D HepG2 hanging drop spheroids to determine the genotoxicity of urethane using the micronucleus assay.

View Article and Find Full Text PDF

Current in vitro genotoxicity tests can produce misleading positive results, indicating an inability to effectively predict a compound's subsequent carcinogenic potential in vivo. Such oversensitivity can incur unnecessary in vivo tests to further investigate positive in vitro results, supporting the need to improve in vitro tests to better inform risk assessment. It is increasingly acknowledged that more informative in vitro tests using multiple endpoints may support the correct identification of carcinogenic potential.

View Article and Find Full Text PDF

Following advancements in the field of genotoxicology, it has become widely accepted that 3D models are not only more physiologically relevant but also have the capacity to elucidate more complex biological processes that standard 2D monocultures are unable to. Whilst 3D liver models have been developed to evaluate the short-term genotoxicity of chemicals, the aim of this study was to develop a 3D model that could be used with the regulatory accepted in vitro micronucleus (MN) following low-dose, longer-term (5 days) exposure to engineered nanomaterials (ENMs). A comparison study was carried out between advanced models generated from two commonly used liver cell lines, namely HepaRG and HepG2, in spheroid format.

View Article and Find Full Text PDF

Due to the rapid development and implementation of a diverse array of engineered nanomaterials (ENM), exposure to ENM is inevitable and the development of robust, predictive in vitro test systems is essential. Hepatic toxicology is key when considering ENM exposure, as the liver serves a vital role in metabolic homeostasis and detoxification as well as being a major site of ENM accumulation post exposure. Based upon this and the accepted understanding that 2D hepatocyte models do not accurately mimic the complexities of intricate multi-cellular interactions and metabolic activity observed in vivo, there is a greater focus on the development of physiologically relevant 3D liver models tailored for ENM hazard assessment purposes in vitro.

View Article and Find Full Text PDF

Use of imaging flow cytometry to assess induced DNA damage via the cytokinesis block micronucleus (CBMN) assay has thus far been limited to radiation dosimetry in human lymphocytes using high end, 'ImageStream X' series imaging cytometers. Its potential to enumerate chemically induced DNA damage using in vitro cell lines remains unexplored. In the present manuscript, we investigate the more affordable FlowSight® imaging cytometry platform to assess in vitro micronucleus (MN) induction in the human lymphoblastoid TK6 and metabolically competent MCL-5 cells treated with Methyl Methane Sulfonate (MMS) (0-5 µg/ml), Carbendazim (0-1.

View Article and Find Full Text PDF

The liver's role in metabolism of chemicals makes it an appropriate tissue for toxicity testing. Current testing protocols, such as animal testing and two-dimensional liver cell systems, offer limited resemblance to in vivo liver cell behaviour, in terms of gene expression profiles and metabolic competence; thus, they do not always accurately predict human toxicology. In vitro three-dimensional liver cell models offer an attractive alternative.

View Article and Find Full Text PDF

The liver's role in metabolism of chemicals makes it an appropriate tissue for toxicity testing. Current testing protocols, such as animal testing and two-dimensional liver cell systems, offer limited resemblance to in vivo liver cell behaviour, in terms of gene expression profiles and metabolic competence; thus, they do not always accurately predict human toxicology. In vitro three-dimensional liver cell models offer an attractive alternative.

View Article and Find Full Text PDF

Human exposure to carcinogens occurs via a plethora of environmental sources, with 70-90% of cancers caused by extrinsic factors. Aberrant phenotypes induced by such carcinogenic agents may provide universal biomarkers for cancer causation. Both current in vitro genotoxicity tests and the animal-testing paradigm in human cancer risk assessment fail to accurately represent and predict whether a chemical causes human carcinogenesis.

View Article and Find Full Text PDF

Benzo[a]pyrene (B[a]P) is a known genotoxin and carcinogen, yet its genotoxic response at low level exposure has not been determined. This study was conducted to examine the interplay of dose and metabolic capacity on genotoxicity of B[a]P. Investigating and better understanding the biological significance of low level chemical exposures will help improve human health risk assessments.

View Article and Find Full Text PDF

Micronucleus (MN) induction is an established cytogenetic end point for evaluating structural and numerical chromosomal alterations in genotoxicity testing. A semi-automated scoring protocol for the assessment of MN preparations from human cell lines and a 3D skin cell model has been developed and validated. Following exposure to a range of test agents, slides were stained with 4'-6-diamidino-2-phenylindole (DAPI) and scanned by use of the MicroNuc module of metafer 4, after the development of a modified classifier for selecting MN in binucleate cells.

View Article and Find Full Text PDF

Oxidative stress contributes to many disease etiologies including ageing, neurodegeneration, and cancer, partly through DNA damage induction (genotoxicity). Understanding the i nteractions of free radicals with DNA is fundamental to discern mutation risks. In genetic toxicology, regulatory authorities consider that most genotoxins exhibit a linear relationship between dose and mutagenic response.

View Article and Find Full Text PDF