Publications by authors named "Umberto Grandi"

We explore an augmented democracy system built on off-the-shelf large language models (LLMs) fine-tuned to augment data on citizens' preferences elicited over policies extracted from the government programmes of the two main candidates of Brazil's 2022 presidential election. We use a train-test cross-validation set-up to estimate the accuracy with which the LLMs predict both: a subject's individual political choices and the aggregate preferences of the full sample of participants. At the individual level, we find that LLMs predict out of sample preferences more accurately than a 'bundle rule', which would assume that citizens always vote for the proposals of the candidate aligned with their self-reported political orientation.

View Article and Find Full Text PDF

Digital technologies can augment civic participation by facilitating the expression of detailed political preferences. Yet, digital participation efforts often rely on methods optimized for elections involving a few candidates. Here we present data collected in an online experiment where participants built personalized government programmes by combining policies proposed by the candidates of the 2022 French and Brazilian presidential elections.

View Article and Find Full Text PDF