The detection and sensing of chirality using chiral biomaterials are growing areas of research in advanced bioelectronics. As a result, chiral-controlled biomaterials are crucial for advancing current technologies in chiral sensing applications within biosystems. A chiral carbon dot (C-dot) modulated self-assembled emissive cellulose nanocrystal (CNC) film is developed where the chirality of the CNC film can be tempered between left-handed and right-handed chirality after being doped with chiral L/D-C-dots in CNCs (C-dot-CNC film), transferring the chirality from C-dots to CNCs.
View Article and Find Full Text PDFMultiple electron and proton transfers in nanomaterials pose significant demands and challenges across the various fields such as renewable energy, chemical processes, biological applications, and photophysics. In this context, pH-responsive functional group-enriched carbon dots (C-Dots) emerge as superior proton-coupled electron transfer (PCET) agents owing to the presence of multiple functional groups (-COOH, -NH, and -OH) on the surface and redox-active sites in the core. Here, we elucidate the 2e/2H transfer ability of carboxyl-enriched C-Dots (C-Dot-COOH) and amine-enriched C-Dots (C-Dot-NH) with molecular 2e/2H acceptor (benzoquinone, BQ) as a function of p, facilitated by the formation of new O-H bonds.
View Article and Find Full Text PDFExploring the heterogeneity of carbon dots (C-Dots) is challenging because of the existence of complex structural diversity, and it is a demanding task for the development and designing of efficient C-Dots for various applications. Herein, we studied the role of the core state and surface state of C-Dots in heterogeneity the successful investigation of the electron transfer (ET) process between different (blue, green, and red) emitting C-Dots and an electron acceptor methyl viologen (MV) using steady-state and time-resolved fluorescence and ultrafast transient absorption (TA) spectroscopic techniques. Selective excitation in the steady-state and time-resolved mode shows that the ET ability of the core state is higher than that of the surface state.
View Article and Find Full Text PDFInorganic perovskite quantum dots (PQDs) have great potential for optoelectronic applications as a result of their tunable optical properties, significant absorption coefficient, and high mobility. Combining PQDs with molecular adsorbates offers exciting possibilities for future applications, making it important to study interfacial electron transfer in PQD-molecular composites. Here, we present a study of PQD and hemin composites (PQD-hemin) to understand how their interfacial electron transfer dynamics are affected by adsorbate and PQD properties.
View Article and Find Full Text PDF