J Opt Soc Am A Opt Image Sci Vis
February 2016
This paper reports a method of estimating an approximate closed-form solution to the light diffusion equation for any type of geometry involving Dirichlet's boundary condition with known source location. It is based on estimating the optimum locations of multiple imaginary point sources to cancel the fluence at the extrapolated boundary by constrained optimization using a genetic algorithm. The mathematical derivation of the problem to approach the optimum solution for the direct-current type of diffuse optical systems is described in detail.
View Article and Find Full Text PDFA hand-held transvaginal probe suitable for co-registered photoacoustic and ultrasound imaging of ovarian tissue was designed and evaluated. The imaging probe consists of an ultrasound transducer and four 1-mm-core multi-mode optical fibers both housed in a custom-made sheath. The probe was optimized for the highest light delivery output and best beam uniformity on tissue surface, by simulating the light fluence and power output for different design parameters.
View Article and Find Full Text PDFLaser diodes are widely used in diffuse optical tomography (DOT) systems but are typically expensive and fragile, while light-emitting diodes (LEDs) are cheaper and are also available in the near-infrared (NIR) range with adequate output power for imaging deeply seated targets. In this study, we introduce a new low-cost DOT system using LEDs of four wavelengths in the NIR spectrum as light sources. The LEDs were modulated at 20 kHz to avoid ambient light.
View Article and Find Full Text PDFCoregistered ultrasound (US) and photoacoustic imaging are emerging techniques for mapping the echogenic anatomical structure of tissue and its corresponding optical absorption. We report a 128-channel imaging system with real-time coregistration of the two modalities, which provides up to 15 coregistered frames per second limited by the laser pulse repetition rate. In addition, the system integrates a compact transvaginal imaging probe with a custom-designed fiber optic assembly for in vivo detection and characterization of human ovarian tissue.
View Article and Find Full Text PDFIn this paper, human ovarian tissue with malignant and benign features was imaged ex vivo using an optical-resolution photoacoustic microscopy (OR-PAM) system. The feasibility of PAM to differentiate malignant from normal ovarian tissues was explored by comparing the PAM images morphologically. Based on the observed differences between PAM images of normal and malignant ovarian tissues in microvasculature features and distributions, seven features were quantitatively extracted from the PAM images, and a logistic model was used to classify ovaries as normal or malignant.
View Article and Find Full Text PDFTo overcome the intensive light scattering in biological tissue, diffuse optical tomography (DOT) in the near-infrared range for breast lesion detection is usually combined with other imaging modalities, such as ultrasound, x-ray, and magnetic resonance imaging, to provide guidance. However, these guiding imaging modalities may depend on different contrast mechanisms compared to the optical contrast in the DOT. As a result, they cannot provide reliable guidance for DOT because some lesions may not be detectable by a nonoptical modality but may have a high optical contrast.
View Article and Find Full Text PDFA photoacoustic contrast agent that is based on bis-carboxylic acid derivative of indocyanine green (ICG) covalently conjugated to single-wall carbon nanotubes (ICG/SWCNT) is presented. Covalently attaching ICG to the functionalized SWCNT provides a more robust system that delivers much more ICG to the tumor site. The detection sensitivity of the new contrast agent in a mouse tumor model is demonstrated in vivo by our custom-built photoacoustic imaging system.
View Article and Find Full Text PDFWe present the design and construction of a prototype imaging probe capable of co-registered pulse-echo ultrasound and photoacoustic (optoacoustic) imaging in real time. The probe consists of 36 fibers of 200 micron core diameter each that are distributed around a commercial transvaginal ultrasound transducer, and housed in a protective shield. Its performance was demonstrated by two sets of experiments.
View Article and Find Full Text PDFUnique features and the underlining hypotheses of how these features may relate to the tumor physiology in coregistered ultrasound and photoacoustic images of ex vivo ovarian tissue are introduced. The images were first compressed with wavelet transform. The mean Radon transform of photoacoustic images was then computed and fitted with a Gaussian function to find the centroid of a suspicious area for shift-invariant recognition process.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
July 2012
In this paper, we report, to the best of our knowledge, a unique field-programmable gate array (FPGA)-based reconfigurable processor for real-time interlaced co-registered ultrasound and photoacoustic imaging and its application in imaging tumor dynamic response. The FPGA is used to control, acquire, store, delay-and-sum, and transfer the data for real-time co-registered imaging. The FPGA controls the ultrasound transmission and ultrasound and photoacoustic data acquisition process of a customized 16-channel module that contains all of the necessary analog and digital circuits.
View Article and Find Full Text PDF