A solid-state dye-sensitized solar cell (DSC) is fabricated by using arrays of 11-12 µm long, vertically oriented ZnO nanowires as the anode and CuSCN as the solid hole-transport material. The fabricated DSC yields a remarkably higher photocurrent density (J(SC) = 8 mA cm(-2)) compared to previously reported data for solid-state DSCs based on either one-dimensional nanostructures (J(SC) = 0.34 mA cm(-2)) or nanoporous nanocrystalline structures (J(SC) = 4.
View Article and Find Full Text PDFReplacing the liquid electrolytes in dye-sensitized solar cells (DSCs) with solid-state hole-transporting materials (HTMs) may solve the packaging challenge and improve the long-term stability of DSCs. The efficiencies of such solid-state DSCs (ss-DSCs), however, have been far below the efficiencies of their counterparts that use liquid electrolytes, primarily due to the challenges in filling HTMs into thick enough sensitized films based on sintered TiO(2) nanoparticles. Here we report fabrication of high-efficiency ss-DSCs using multilayer TiO(2)-coated ZnO nanowire arrays as the photoanodes.
View Article and Find Full Text PDFVertically ordered nanostructures synthesized directly on transparent conducting oxide have shown great promise for overcoming the limitations of current dye-sensitized solar cells (DSCs) based on random networks of nanoparticles. However, the synthesis of such structures with a high internal surface area has been challenging. Here we demonstrate a convenient approach that involves alternate cycles of nanowire growth and self-assembled monolayer coating processes for synthesizing multilayer assemblies of ZnO nanowire arrays and using the assemblies for fabrication of DSCs.
View Article and Find Full Text PDF