Publications by authors named "Umamaheswari A"

Lignin peroxidase is a heme-containing biocatalyst, well-known for its diverse applications in the fields from environmental chemistry to biotechnology. LiP-mediated oxidative catalysis is HO-dependent, and can oxidize phenolic, and non-phenolic substrates by oxidative cleavage of the C-C and C-O bonds of lignin. In contrast to fungi-derived LiP, the binding affinity of bacterial-derived LiP to lignin at the molecular level is poorly known to date.

View Article and Find Full Text PDF

The study deals with structure-based rational drug design against the chief zinc-rely endopeptidase called matrilysin (MMP-7) that is involved in inflammatory and metastasis process of several carcinomas. Hyperactivated matrilysin of human was targeted, because of its hydrolytic actions on extracellular matrix (ECM) protein components constitutes fibrillar collagens, gelatins, fibronectins and it also activates zymogen forms of vital matrix metalloproteinases (gelatinase A-MMP-2 and B-MMP-9) responsible for ECM destruction in many cancers. In the present work, e-pharmacophores were generated for the respective five co-crystal structures of human matrilysin by mapping ligand's pharmacophoric features.

View Article and Find Full Text PDF

In 21 st century, nanomedicine has turned out to be an emergent modulus operation for the diagnosis and treatment for cancer. The current study includes the Green synthesis of zinc oxide nanoparticles (ZnO NPs) from the leaves of and interpretation of its anticancer activity. Synthesized ZnO NPs were investigated by UV-vis, FTIR, particle size analysis, SEM, XRD and its anticancer activity using A549 cell lines.

View Article and Find Full Text PDF

Perennial contaminated groundwater seepage is threatening the downstream ecosystem of the Kazipally Pharmaceutical industrial area located in South India. The sources of seepage are unknown for the last three decades that challenging the regulatory authorities and industries. In general, water quality monitoring and geophysical techniques are applied to identify the sources.

View Article and Find Full Text PDF

Biofilms are multi-species bacterial communities with complex structures that create antibiotic resistance, cause life-threatening infections, thereby considerable economic loss; needed new approaches. Medicinal plants are focused as new alternatives for their therapeutic and antimicrobial effects. Our present study, and extracts were investigated against MRSA.

View Article and Find Full Text PDF

The objectives of the present work are to design, syhthesize and introduce novel urea/thiourea derivatives of 2-(piperazine-1-yl)-pyrimidine and 1-(4-Fluoro/4-Chloro phenyl)-piperazine molecules as tobacco mosaic virus (TMV) inhibitors. A series of urea/thiourea derivatives containing pyrimidine and piperazine moieties were synthesized, characterized using Fourier-transform infrared (FTIR) mass spectra, nuclear magnetic resonance (NMR) spectroscopy, elemental analysis and evaluated their sustainability using biological experiments. The anti-viral bioassay of the title compounds showed an antiviral activity against TMV.

View Article and Find Full Text PDF

In the present work a series of N'-arylidene-2-(benzamido)-3-(naphthalen-2-yl)acrylohydrazides were synthesized by refluxing the intermediate 2-(benzamido)-3-(naphthalen-2-yl)acrylohydrazide with various substituted benzaldehyde in the presence of glacial acetic acid. The intermediate 2-(benzamido)-3-(naphthalen-2-yl)acrylohydrazide 2 was prepared by stirring 4-((naphthalen-2-yl)methylene)-2-phenyloxazol-5(4H)-one with hydrazine hydrate in the presence of absolute ethanol. The chemical structures of the compounds were established by IR, H NMR and mass spectral data.

View Article and Find Full Text PDF

Colorectal cancer remains to be the most prevalent malignancy in humans and 1.5 million men and women living in the United States are diagnosed with colorectal cancer, with a predicted 145,600 new cases to be diagnosed in 2019. Curcuminoids and its synthetic analogs are now of interest due to their bioactive attributes, especially their action as anticancer activity in various cancer cell line models.

View Article and Find Full Text PDF

Leptospirosis is one of the leading zoonotic infections worldwide. As with other infectious diseases, report of antimicrobial resistance to existing therapeutic arsenal poses challenges in the management of disease. Hence, identification of novel drug targets for the pathogen deems essential.

View Article and Find Full Text PDF

Wound healing is a natural intricate cascade process involving cellular, biochemical and molecular mechanism to restore the injured or wounded tissue. Malaysia's multi-ethnic social fabric is reflected in its different traditional folk cuisines with different nutritional important ingredients. Despite these differences, there are some commonly used pantry ingredients among Malaysians and these ingredients may possess some healing power for acute and chronic wounds.

View Article and Find Full Text PDF

Background: The available treatment option for any type of cancer including CTCL is chemotherapy and radiation therapy which indiscriminately persuade on the normal cells. One way out for selective destruction of CTCL cells without damaging normal cells is the use of histone deacetylase inhibitors (HDACi). Despite promising results in the treatment of CTCL, these HDACi have shown a broadband inhibition profile, moderately selective for one HDAC class but not for a particular isotype.

View Article and Find Full Text PDF

Fluoroquinolones (FQs) belong to the class of quinolone drugs that are used to treat Urinary tract infections (UTIs) through inhibition of DNA gyrase. Resistance to FQs poses a serious problem in the treatment against resistant strains of which are associated with Ser83 to Leu and Asp87 to Asn mutations at the quinolone resistance determining region (QRDR) of the GyrA subunit of DNA gyrase. Mutant DNA GyrA (mtDNA GyrA) is deemed to be a significant target for the development of novel FQ drugs.

View Article and Find Full Text PDF

Gastric cancer risk and adverse ramifications by augmented multi-drug resistance (MDR) of Helicobacter pylori are alarming serious health concern. Combating through available drugs is a difficult task due to lack of appropriate common targets against genetically diverse strains. To improve efficacy, the effective targets should be identified and critically assessed.

View Article and Find Full Text PDF

Background: Drugs that inhibit cyclooxygenase-2 (COX-2) while sparing cyclooxygenase-1 (COX-1) represent a new attractive therapeutic development and offer new perspective for further use of COX-2 inhibitors. Intention of this work is to develop safer, selective COX-2 inhibitors that do not produce harmful effects.

Results: A series of 55 tyrosine derivatives were designed for evaluation as selective COX-2 inhibitors and investigated by in silico for their anti-inflammatory activities using C-Docker.

View Article and Find Full Text PDF

c-Jun-NH2 terminal kinases (JNKs) come under a class of serine/threonine protein kinases and are encoded by three genes, namely JNK1, JNK2 and JNK3. Human JNK1 is a cytosolic kinase belonging to mitogen-activated protein kinase (MAPK) family, which plays a major role in intracrinal signal transduction cascade mechanism. Overexpressed human JNK1, a key kinase interacts with other kinases involved in the etiology of many cancers, such as skin cancer, liver cancer, breast cancer, brain tumors, leukemia, multiple myeloma and lymphoma.

View Article and Find Full Text PDF

Infective endocarditis (IE) has emerged as a public health problem due to changes in the etiologic spectrum and due to involvement of resistant bacterial strains with increased virulence. Developing potent vaccine is an important strategy to tackle IE. Complete genome sequences of eight selected pathogens of IE paved the way to design common T-cell driven subunit vaccines.

View Article and Find Full Text PDF

Bacterial meningitis, an infection of the membranes (meninges) and cerebrospinal fluid (CSF) surrounding the brain and spinal cord, is a major cause of death and disability all over the world. From perinatal period to adult, four common organisms responsible for most of the bacterial meningitis are Streptococcus pneumonia, Neisseria meningitidis, Haemophilus influenza and Staphylococcus aureus. As the disease is caused by more organisms, currently available vaccines for bacterial meningitis are specific and restricted to some of the serogroups or serotypes of each bacterium.

View Article and Find Full Text PDF

Leptospira interrogans, a Gram-negative bacterial pathogen is the main cause of human leptospirosis. Lipid A is a highly immunoreactive endotoxic center of lipopolysaccharide (LPS) that anchors LPS into the outer membrane of Leptospira. Discovery of compounds inhibiting lipid-A biosynthetic pathway would be promising for dissolving the structural integrity of membrane leading to cell lysis and death of Leptospira.

View Article and Find Full Text PDF

Epitopes of Leptospira inducing CD4(+) T-cell responses by binding to human MHC molecules could critically contribute to the development of subunit vaccines for leptospirosis. Herein, we have identified unique vaccine peptides from outer membrane proteins (OMPs) common to four sequenced pathogenic Leptospira serovars through in silico reverse vaccinology technique. The OMPs were explored for probable antigens using jemboss and screened in ProPred subsequently to predict thirty HLA-DRB epitopes.

View Article and Find Full Text PDF

Histone deacetylases (HDACs) are enzymes, which catalyze the removal of acetyl moiety from acetyl-lysine within the histone proteins and promote gene repression and silencing resulting in several types of cancer. HDACs are important therapeutic targets for the treatment of cancer and related diseases. Hydroxamic acid inhibitors show promising results in clinical trials against carcinogenesis.

View Article and Find Full Text PDF

The life-threatening infections caused by Leptospira serovars demand the need for designing anti-leptospirosis drugs. The present study encompasses exploring inhibitors against phosphoheptose isomerase (GmhA) of Leptospira, which is vital for lipopolysaccharide (LPS) biosynthesis and is identified as a common drug target through the subtractive genomic approach. GmhA model was built in Modeller 9v7.

View Article and Find Full Text PDF

Yellow fever is among one of the most lethal viral diseases for which approved antiviral therapies were yet to be discovered. Herein, functional assignment of complete YFV proteome was done through support vector machine. Major envelope (E) protein that mediates entry of YFV into host cell was selected as a potent molecular target.

View Article and Find Full Text PDF

The life-threatening infections caused by Leptospira serovars remain a global challenge since long time. Prevention of infection by controlling environmental factors being difficult to practice in developing countries, there is a need for designing potent anti-leptospirosis drugs. ATP-dependent MurD involved in biosynthesis of peptidoglycan was identified as common drug target among pathogenic Leptospira serovars through subtractive genomic approach.

View Article and Find Full Text PDF

Concentration-dependent inhibition of the photosynthetic electron transport chain (photosystem I (PS I), photosystem II (PS II) and whole chain reaction) and ATP content was observed in Nostoc muscorum and Chlorella vulgaris grown with o-nitrophenol, m-nitrophenol, or 2,4-dinitrophenol. Although the extents of inhibition of the photosynthetic electron transport chain in both organisms were similar, PS II was more sensitive than PS I and whole chain reaction to the nitrophenols. Depletion of the ATP pool was noted in nitrophenol-grown cultures, probably as a consequence of nearly complete inhibition of the photosynthetic electron transport chain.

View Article and Find Full Text PDF