This paper describes the implementation of a biochemical and biophysical screening strategy to identify and optimize small molecule Akt1 inhibitors that act through a mechanism distinct from that observed for kinase domain ATP-competitive inhibitors. With the aid of an unphosphorylated Akt1 cocrystal structure of 12j solved at 2.25 Å, it was possible to confirm that as a consequence of binding these novel inhibitors, the ATP binding cleft contained a number of hydrophobic residues that occlude ATP binding as expected.
View Article and Find Full Text PDFActivation of DNA damage checkpoint pathways, including Chk2, serves as an anticancer barrier in precancerous lesions. In an effort to identify small-molecule activators of Chk2, the authors developed a quantitative cell-based assay using a high-content analysis (HCA) platform. Induction of phosphorylated Chk2 was evaluated using several different parameters, including fold induction, Kolmogorov-Smirnov score, and percentage of positively stained cells.
View Article and Find Full Text PDF