Determining the structure-odor relationship has always been a very challenging task. The main challenge in investigating the correlation between the molecular structure and its associated odor is the ambiguous and obscure nature of verbally defined odor descriptors, particularly when the odorant molecules are from different sources. With the recent developments in machine learning (ML) technology, ML and data analytic techniques are significantly being used for quantitative structure-activity relationship (QSAR) in the chemistry domain toward knowledge discovery where the traditional Edisonian methods have not been useful.
View Article and Find Full Text PDFWhile naturalistic stimuli, such as movies, better represent the complexity of the real world and are perhaps crucial to understanding the dynamics of emotion processing, there is limited research on emotions with naturalistic stimuli. There is a need to understand the temporal dynamics of emotion processing and their relationship to different dimensions of emotion experience. In addition, there is a need to understand the dynamics of functional connectivity underlying different emotional experiences that occur during or prior to such experiences.
View Article and Find Full Text PDFOur brain continuously interacts with the body as we engage with the world. Although we are mostly unaware of internal bodily processes, such as our heartbeats, they may be influenced by and in turn influence our perception and emotional feelings. Although there is a recent focus on understanding cardiac interoceptive activity and interaction with brain activity during emotion processing, the investigation of cardiac-brain interactions with more ecologically valid naturalistic emotional stimuli is still very limited.
View Article and Find Full Text PDFThe purpose of this paper is twofold: (i) to investigate the emotion representation models and find out the possibility of a model with minimum number of continuous dimensions and (ii) to recognize and predict emotion from the measured physiological signals using multiresolution approach. The multimodal physiological signals are: Electroencephalogram (EEG) (32 channels) and peripheral (8 channels: Galvanic skin response (GSR), blood volume pressure, respiration pattern, skin temperature, electromyogram (EMG) and electrooculogram (EOG)) as given in the DEAP database. We have discussed the theories of emotion modeling based on i) basic emotions, ii) cognitive appraisal and physiological response approach and iii) the dimensional approach and proposed a three continuous dimensional representation model for emotions.
View Article and Find Full Text PDFConf Proc IEEE Eng Med Biol Soc
October 2012
Deblurring in the presence of non-Gaussian noise is a hard problem, specially in ultrasonic and CT images. In this paper, a new method of image restoration, using complex wavelet transform, has been devised and applied to deblur in the presence of high speckle noise. It has been shown that the new method outperforms the Weiner filtering and Fourier-wavelet regularized deconvolution (ForWaRD) methods for both ultrasonic and CT images.
View Article and Find Full Text PDF