Mycobacterium tuberculosis (Mtb) is an intracellular pathogen that forms aggregates (clumps) on solid agar plates and in liquid media. Detergents such as Tween 80/Tyloxapol are considered the gold standard to disrupt clump formation in Mtb cultures. The presence of detergent, however, may generate foam and hinder Mtb aerosolization thus requiring addition of an antifoam agent for optimal Mtb aerosol-based procedures.
View Article and Find Full Text PDFBackground: Tuberculosis currently stands as the second leading cause of deaths worldwide due to single infectious agent after Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The current challenges of drug resistance in tuberculosis highlight an urgent need to develop newer anti-mycobacterial compounds. In the present study, we report the serendipitous discovery of a bacterial laboratory contaminant (LC-1) exhibiting a zone of growth inhibition on an agar plate seeded with Mycobacterium tuberculosis.
View Article and Find Full Text PDFDormancy is a key characteristic of the intracellular life-cycle of . The importance of sensor kinase DosS in mycobacteria are attributed in part to our current findings that DosS is required for both persistence and full virulence of . Here we show that DosS is also required for optimal replication in macrophages and involved in the suppression of TNF-α and autophagy pathways.
View Article and Find Full Text PDFcontinues to cause devastating levels of mortality due to tuberculosis (TB). The failure to control TB stems from an incomplete understanding of the highly specialized strategies that utilizes to modulate host immunity and thereby persist in host lungs. Here, we show that induced the expression of indoleamine 2,3-dioxygenase (IDO), an enzyme involved in tryptophan catabolism, in macrophages and in the lungs of animals (mice and macaque) with active disease.
View Article and Find Full Text PDFCD4+ T-cell mediated Th1 immune responses are critical for immunity to TB. The immunomodulatory protein, lymphocyte activation gene-3 (LAG-3) decreases Th1-type immune responses in T-cells. LAG-3 expression is significantly induced in the lungs of macaques with active TB and correlates with increased bacterial burden.
View Article and Find Full Text PDFAlthough it is accepted that the environment within the granuloma profoundly affects Mycobacterium tuberculosis (Mtb) and infection outcome, our ability to understand Mtb gene expression in these niches has been limited. We determined intragranulomatous gene expression in human-like lung lesions derived from nonhuman primates with both active tuberculosis (ATB) and latent TB infection (LTBI). We employed a non-laser-based approach to microdissect individual lung lesions and interrogate the global transcriptome of Mtb within granulomas.
View Article and Find Full Text PDFMycobacterium tuberculosis (Mtb) infections cause tuberculosis (TB), an infectious disease which causes ∼1.5 million deaths annually. The ability of this pathogen to evade, escape and encounter immune surveillance is fueled by its adaptability.
View Article and Find Full Text PDFTuberculosis (TB) is a global pandaemic, partially due to the failure of vaccination approaches. Novel anti-TB vaccines are therefore urgently required. Here we show that aerosol immunization of macaques with the Mtb mutant in SigH (MtbΔsigH) results in significant recruitment of inducible bronchus-associated lymphoid tissue (iBALT) as well as CD4(+) and CD8(+) T cells expressing activation and proliferation markers to the lungs.
View Article and Find Full Text PDFDespite considerable progress in understanding the pathogenesis of Mycobacterium tuberculosis (Mtb), development of new therapeutics and vaccines against it has proven difficult. This is at least in part due to the use of less than optimal models of in-vivo Mtb infection, which has precluded a study of the physiology of the pathogen in niches where it actually persists. C3HeB/FeJ (Kramnik) mice develop human-like lesions when experimentally infected with Mtb and thus make available, a faithful and highly tractable system to study the physiology of the pathogen in-vivo.
View Article and Find Full Text PDFRationale: Hypoxia promotes dormancy by causing physiologic changes to actively replicating Mycobacterium tuberculosis. DosR controls the response of M. tuberculosis to hypoxia.
View Article and Find Full Text PDFMycobacterium tuberculosis (Mtb) must counter hypoxia within granulomas to persist. DosR, in concert with sensor kinases DosS and DosT, regulates the response to hypoxia. Yet Mtb lacking functional DosR colonize the lungs of C57Bl/6 mice, presumably owing to the lack of organized lesions with sufficient hypoxia in that model.
View Article and Find Full Text PDFMycobacterium tuberculosis (Mtb) persists within lung granulomas, despite being subjected to diverse stress conditions, including hypoxia. We hypothesized that the response of host phagocytes to Mtb experiencing hypoxia is radically altered and designed in vitro experiment to study this phenomenon. Hypoxia-stressed (Mtb-H) and aerobically grown Mtb (Mtb-A) were used to infect Rhesus Macaque Bone Marrow Derived Macrophages (Rh-BMDMs) and the comparative host response to Mtb infection studied.
View Article and Find Full Text PDFTuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is the leading cause of death from an infectious disease worldwide. Over the course of its life cycle in vivo, Mtb is exposed to a plethora of environmental stress conditions. Temporal regulation of genes involved in sensing and responding to such conditions is therefore crucial for Mtb to establish an infection.
View Article and Find Full Text PDFThe DevR/DosR regulator is believed to play a key role in dormancy adaptation mechanisms of Mycobacterium tuberculosis in response to a multitude of gaseous stresses, including hypoxia, which prevails within granulomas. DevR activates transcription by binding to target promoters containing a minimum of two binding sites. The proximal site overlaps with the SigA -35 element, suggesting that DevR-SigA interaction is required for activating transcription.
View Article and Find Full Text PDFThe DevR (DosR) response regulator initiates the bacterial adaptive response to a variety of signals, including hypoxia in in vitro models of dormancy. Its receiver domain works as a phosphorylation-mediated switch to activate the DNA binding property of its output domain. Receiver domains are characterized by the presence of several highly conserved residues, and these sequence features correlate with structure and hence function.
View Article and Find Full Text PDFBackground: DevR (also called as DosR) is a two-domain response regulator of the NarL subfamily that controls dormancy adaptation of Mycobacterium tuberculosis (M. tb). In response to inducing signals such as hypoxia and ascorbic acid, the N-terminal receiver domain of DevR (DevR(N)) is phosphorylated at Asp54.
View Article and Find Full Text PDFA Tn5-induced mutant of Mesorhizobium ciceri, TL28, requiring the amino acid lysine for growth on minimal medium was isolated and characterized. The Tn5 insertion in the mutant strain TL28 was located on a 6.8-kb EcoRI fragment of the chromosomal DNA.
View Article and Find Full Text PDFA Tn5-induced mutant strain (TL68) of Mesorhizobium ciceri unable to grow with ammonium as the sole nitrogen source was isolated and characterized. Unlike its wild-type parent (strain TAL620), the mutant had an absolute dependence on serine to grow. Cloning of the DNA region containing Tn5 and sequence analysis showed that Tn5 was inserted into the gene coding for 3-phosphoglycerate dehydrogenase, which catalyses the first step in the serine biosynthetic pathway.
View Article and Find Full Text PDF