Publications by authors named "Uma Mangalanathan"

This study explored the role of the Na/K-ATPase (NKA) in membrane permeabilization induced by nanosecond electric pulses. Using CRISPR/Cas9 and shRNA, we silenced the ATP1A1 gene, which encodes α1 NKA subunit in U937 human monocytes. Silencing reduced the rate and the cumulative uptake of YoPro-1 dye after electroporation by 300-ns, 7-10 kV/cm pulses, while ouabain, a specific NKA inhibitor, enhanced YoPro-1 entry.

View Article and Find Full Text PDF

The study was aimed at identifying endogenous proteins which assist or impede the permeabilized state in the cell membrane disrupted by nsEP (20 or 40 pulses, 300 ns width, 7 kV/cm). We employed a LentiArray CRISPR library to generate knockouts (KOs) of 316 genes encoding for membrane proteins in U937 human monocytes stably expressing Cas9 nuclease. The extent of membrane permeabilization by nsEP was measured by the uptake of Yo-Pro-1 (YP) dye and compared to sham-exposed KOs and control cells transduced with a non-targeting (scrambled) gRNA.

View Article and Find Full Text PDF

Focusing electric pulse effects away from electrodes is a challenge because the electric field weakens with distance. Previously we introduced a remote focusing method based on bipolar cancellation, a phenomenon of low efficiency of bipolar nanosecond electric pulses (nsEP). Superpositioning two bipolar nsEP into a unipolar pulse canceled bipolar cancellation ("CANCAN" effect), enhancing bioeffects at a distance despite the electric field weakening.

View Article and Find Full Text PDF

Cancer ablation therapies aim to be efficient while minimizing damage to healthy tissues. Nanosecond pulsed electric field (nsPEF) is a promising ablation modality because of its selectivity against certain cell types and reduced neuromuscular effects. We compared cell killing efficiency by PEF (100 pulses, 200 ns-10 µs duration, 10 Hz) in a panel of human esophageal cells (normal and pre-malignant epithelial and smooth muscle).

View Article and Find Full Text PDF

Electric shocks, the only effective therapy for ventricular fibrillation, also electroporate cardiac cells and contribute to the high-mortality post-cardiac arrest syndrome. Copolymers such as Poloxamer 188 (P188) are known to preserve the membrane integrity and viability of electroporated cells, but their utility against cardiac injury from cardiopulmonary resuscitation (CPR) remains to be established. We studied the time course of cell killing, mechanisms of cell death, and protection with P188 in AC16 human cardiomyocytes exposed to micro- or nanosecond pulsed electric field (μsPEF and nsPEF) shocks.

View Article and Find Full Text PDF

The quest for safe and effective ablation resulted in the development of nanosecond pulsed electric fields (nsPEF) technology for tumor treatment. For future applications of nsPEF in urothelial cancer treatment, we evaluated the effect of urine presence at the ablation site. We prepared artificial urine (AU) with compounds commonly present in the healthy human urine at physiological concentrations.

View Article and Find Full Text PDF

Electroporation, in particular with nanosecond pulses, is an efficient technique to generate nanometer-size membrane lesions without the use of toxins or other chemicals. The restoration of the membrane integrity takes minutes and is only partially dependent on [Ca]. We explored the impact of Ca on the kinetics of membrane resealing by monitoring the entry of a YO-PRO-1 dye (YP) in BPAE and HEK cells.

View Article and Find Full Text PDF

The principal bioeffect of the nanosecond pulsed electric field (nsPEF) is a lasting cell membrane permeabilization, which is often attributed to the formation of nanometer-sized pores. Such pores may be too small for detection by the uptake of fluorescent dyes. We tested if Ca, Cd, Zn, and Ba ions can be used as nanoporation markers.

View Article and Find Full Text PDF

Depending on the initiating stimulus, cancer cell death can be immunogenic or non-immunogenic. Inducers of immunogenic cell death (ICD) rely on endoplasmic reticulum (ER) stress for the trafficking of danger signals such as calreticulin (CRT) and ATP. We found that nanosecond pulsed electric fields (nsPEF), an emerging new modality for tumor ablation, cause the activation of the ER-resident stress sensor PERK in both CT-26 colon carcinoma and EL-4 lymphoma cells.

View Article and Find Full Text PDF

Intense nanosecond pulsed electric field (nsPEF) is a novel modality for cell activation and nanoelectroporation. Applications of nsPEF in research and therapy are hindered by a high electric field requirement, typically from 1 to over 50 kV/cm to elicit any bioeffects. We show how this requirement can be overcome by engaging temporal summation when pulses are compressed into high-rate bursts (up to several MHz).

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigated how a nanosecond pulsed electric field (nsPEF) affects membrane permeability in HEK293 cells, focusing on those with and without CaV1.3 L-type voltage-gated calcium channels (VGCC) using different voltage levels (0, 1.4, 1.8, and 2.3 kV/cm).
  • - Results showed that at 1.8 kV/cm, around 50% of cells experienced a lasting increase in membrane conductance, while at 2.3 kV/cm, all cells were affected, indicating that higher voltages enhance membrane permeabilization.
  • - Cells expressing VGCC displayed about twice the increase in conductance compared to
View Article and Find Full Text PDF

Calcium electroporation may offer a simple general tool for anticancer therapy. Transient permeabilization of cancer cell membranes created by applying short, high-voltage pulses in tumors enables high calcium influxes that trigger cell death. In this study, we compared the relative sensitivity of different human tumor models and normal tissues to calcium electroporation.

View Article and Find Full Text PDF
Article Synopsis
  • Electroporation enhances cancer treatments by increasing the effectiveness of drugs like bleomycin and calcium, leading to localized cell destruction.
  • Calcium electroporation selectively targets and kills cancer cells through necrosis, which may trigger an immune response due to the release of antigens and danger signals.
  • In studies with mice, both calcium electroporation and electrochemotherapy showed high success rates in tumor remission and indicated potential as immune-boosting cancer therapies, unlike treatments in immunodeficient mice.
View Article and Find Full Text PDF