Publications by authors named "Uma Maheswari P"

Article Synopsis
  • Nano-materials, particularly green synthesized silver nanoparticles (SC-AgNPs) from Smilax Chenensis, show promise in various biomedical applications due to their antibacterial, antioxidant, and anticancer properties.
  • Characterization techniques like UV-visible spectroscopy and TEM indicate SC-AgNPs are stable, roughly spherical, and poly-dispersed with an average size of 45.6 nm.
  • SC-AgNPs exhibit strong antibacterial activity against E.coli and S.aureus, enhanced in combination with antibiotics, making them a potential alternative for treating antibiotic-resistant bacteria, along with significant antioxidant and anticancer activities.
View Article and Find Full Text PDF

PolyCystic Ovarian Syndrome (PCOS) poses significant challenges to women's reproductive health due to its diagnostic complexity arising from a variety of symptoms, including hirsutism, anovulation, pain, obesity, hyperandrogenism, and oligomenorrhea, necessitating multiple clinical tests. Leveraging Artificial Intelligence (AI) in healthcare offers several benefits that can significantly impact patient care, streamline operations, and improve medical outcomes overall. This study presents an Explainable Artificial Intelligence (XAI)-driven PCOS smart predictor, structured as a hierarchical ensemble consisting of two tiers of Random Forest classifiers following extensive analysis of seven conventional classifiers and two additional stacking ensemble classifiers.

View Article and Find Full Text PDF

A novel progesterone-receptor targeted nanohybrid carrier based delivery of hesperidin was investigated in the present work. Casein‑calcium ferrite nanohybrid carrier was synthesized using desolvation followed by ionic-gelation. The citrus peel extracted hesperidin drug (CHD) was encapsulated in the carrier via pH based coacervation, after which the targeting ligand progesterone was conjugated through activate ester procedure.

View Article and Find Full Text PDF

Diabetic retinopathy (DR) is an eye disease, which affects the people who are all having the diabetes for more than 10 years. The ophthalmologist identifies when the dilated eye exam causes severe in any one of the following deviations in the retina: changes in blood vessels, leaking blood vessels, newly grown blood vessels, swelling of the macula, changes in the lens, and damages to the nerve tissue. It can eventually lead to vision loss.

View Article and Find Full Text PDF

The coordination geometry around copper(II) in [Cu(imda)(phen)(H2O)] (1) (H2imda = iminodiacetic acid, phen = 1,10-phenanthroline) is described as distorted octahedral while those in [Cu(imda)(5,6-dmp)] (2) (5,6-dmp = 5,6-dimethyl-1,10-phenanthroline) and [Cu(imda)(dpq)] (3) (dpq = dipyrido-[3,2-d:2',3'-f]-quinoxaline) as trigonal bipyramidal distorted square-based pyramidal with the imda anion facially coordinated to copper(II). Absorption spectral (Kb: 1, 0.60+/-0.

View Article and Find Full Text PDF

Copper(II) complexes of three linear unsymmetrical tridentate ligands viz. N-methyl-N'-(pyrid-2-ylmethyl)ethylenediamine (L1), N,N-dimethyl-N'-(pyrid-2-ylmethyl)ethylenediamine (L2) and N,N-dimethyl-N'-((6-methyl)pyrid-2-ylmethyl)ethylenediamine (L3) have been isolated and characterized by elemental analysis, electronic absorption and EPR spectroscopy and cyclic and differential pulse voltammetry. Of these complexes [Cu(L2)Cl2] and [Cu(L3)Cl2] have been structurally characterized by X-ray crystallography.

View Article and Find Full Text PDF

A series of ruthenium(II) mixed ligand complexes of the type [Ru(NH(3))(4)(L)](2+), where L=imidazo[4,5-f][1,10]phenanthroline (ip), 2-phenylimidazo[4,5-f][1,10]phenanthroline (pip), 2-(2-hydroxyphenyl)imidazo[4,5-f][1,10]phenanthroline (hpip), 4,7-diphenyl-1,10-phenanthroline (dip), naphtha[2,3-a]dipyrido[3,2-h:2',3'-f]phenazine-5,18-dione (qdppz), 5,18-dihydroxynaphtho[2,3-a]dipyrido[3,2-H:2',3'-f]phenazine (hqdppz), have been isolated and characterized. The interaction of these complexes with calf thymus DNA (CT DNA) has been explored by using absorption, emission, and circular dichroic spectral methods, thermal denaturation studies and viscometry. All these studies suggest the involvement of the modified phenanthroline 'face' rather than the ammonia 'face' of the complexes in DNA binding.

View Article and Find Full Text PDF