Publications by authors named "Uma M Singh"

Rice blast and bacterial leaf blight, are major disease, significantly threatens rice yield in all rice growing regions under favorable conditions and identification of resistance genes and their superior haplotypes is a potential strategy for effectively managing and controlling this devastating disease. In this study, we conducted a genome-wide association study (GWAS) using a diverse set of 147 rice accessions for blast and bacterial blight diseases in replications. Results revealed 23 (9 for blast and 14 for BLB) significant marker-trait associations (MTAs) that corresponded to 107 and 210 candidate genes for blast and BLB, respectively.

View Article and Find Full Text PDF

Background: Rice (Oryza sativa L.) is one of the globally important staple food crops, and yield-related traits are prerequisites for improved breeding efficiency in rice. Here, we used six different genome-wide association study (GWAS) models for 198 accessions, with 553,229 single nucleotide markers (SNPs) to identify the quantitative trait nucleotides (QTNs) and candidate genes (CGs) governing rice yield.

View Article and Find Full Text PDF

Improving the quality of the appearance of rice is critical to meet market acceptance. Mining putative quality-related genes has been geared towards the development of effective breeding approaches for rice. In the present study, two SL-GWAS (CMLM and MLM) and three ML-GWAS (FASTmrEMMA, mrMLM, and FASTmrMLM) genome-wide association studies were conducted in a subset of 3K-RGP consisting of 198 rice accessions with 553,831 SNP markers.

View Article and Find Full Text PDF

Haplotype-based breeding is an emerging and innovative concept that enables the development of designer crop varieties by exploiting and exploring superior alleles/haplotypes among target genes to create new traits in breeding programs. In this regard, whole-genome re-sequencing of 399 genotypes (landraces and breeding lines) from the 3000 rice genomes panel (3K-RG) is mined to identify the superior haplotypes for 95 drought-responsive candidate genes. Candidate gene-based association analysis reveals 69 marker-trait associations (MTAs) in 16 genes for single plant yield (SPY) under drought stress.

View Article and Find Full Text PDF

Identifying high-impact, rare genetic variants associated with specific traits is crucial for crop improvement. The 3,010 rice genome (3K RG) dataset offers a valuable resource for discovering genomic regions with potential applications in crop breeding. We used Extreme Trait GWAS (Et-GWAS), employing bulk pooling and allele frequency measurement to efficiently extract rare variants from the 3K RG.

View Article and Find Full Text PDF

To increase rice yields and feed billions of people, it is essential to enhance genetic gains. However, the development of new varieties is hindered by longer generation times and seasonal constraints. To address these limitations, a speed breeding facility has been established and a robust speed breeding protocol, SpeedFlower is developed that allows growing 4-5 generations of indica and/or japonica rice in a year.

View Article and Find Full Text PDF

Plants experience different stresses, i.e., abiotic, or biotic, and to combat them, plants re-program the expression of growth-, metabolism-, and resistance-related genes.

View Article and Find Full Text PDF

Major biotic stresses viz., bacterial blight (BB) and blast and brown plant hopper (BPH) coupled with abiotic stresses like drought stress, significantly affect rice yields. To address this, marker-assisted intercross (IC) breeding involving multiple donors was used to combine three BB resistance genes- and , two blast resistance genes- and , two BPH resistance genes- and , and four drought tolerant quantitative trait loci (QTL)- and -in the genetic background of the elite Indian rice cultivar 'Krishna Hamsa'.

View Article and Find Full Text PDF

The development and utilization of molecular-markers play an important role in genomics-assisted breeding during pyramiding of valuable genes. The aim of present study was to develop and validate a novel core-set of KASP (Kompetitive Allele-Specific PCR) markers associated with traits improving rice grain yield and adaptability under direct-seeded cultivation conditions. The 110 phenotypically validated KASP assays out of 171 designed KASP, include assays for biotic-resistance genes, anaerobic germination, root-traits, grain yield, lodging resistance and early-uniform emergence.

View Article and Find Full Text PDF

Among the different challenges related to rice (Oryza sativa L.) cultivation, drought, bacterial leaf blight (BLB), and blast are the key stresses that significantly affect grain yield (GY) in rice. To ameliorate this issue, marker-assisted forward breeding (MAFB) coupled with a simultaneous crossing approach was used to combine three drought tolerant quantitative trait loci (QTL)-qDTY , qDTY , and qDTY -four BLB genes-Xa4, xa5, xa13, and Xa21-and one blast-resistance gene, Pi9, in the elite rice cultivar Lalat.

View Article and Find Full Text PDF

The elite Indian rice variety, Naveen is highly susceptible to major biotic and abiotic stresses such as blast, bacterial blight (BB), gall midge (GM) and drought which limit its productivity in rainfed areas. In the present study, a combined approach of marker-assisted forward (MAFB) and back cross (MABC) breeding was followed to introgress three major genes, viz., Pi9 for blast, Xa21 for bacterial blight (BB), and Gm8 for gall midge (GM) and three major QTLs, viz.

View Article and Find Full Text PDF

Increasing trends in the occurrence of diabetes underline the need to develop low glycemic index (GI) rice with preferred grain quality. In the current study, a diverse set of 3 K sub-panel of rice consisting of 150 accessions was evaluated for resistant starch and predicted glycemic index, including nine other quality traits under transplanted situation. Significant variations were noticed among the accessions for the traits evaluated.

View Article and Find Full Text PDF

Photosynthates generated after heading contributes to 60% - 80% of grain yield in rice. Delay in leaf senescence can contribute to a long grain-filling period and thereby increased yield. The objective of this study was to identify genomic region(s) responsible for delayed leaf senescence (DLS) and validate the role of underlying candidate genes in controlling target traits.

View Article and Find Full Text PDF

Rice is a staple food for half of the world's population. Changing climatic conditions, water and labour scarcity are the major challenges that shall limit future rice production. Dry direct-seeded rice (DDSR) is emerging as an efficient, resources conserving, mechanized, climate smart and economically viable strategy to be adopted as an alternative to puddled transplanted rice (TPR) with the potential to address the problem of labour-water shortages and ensure sustainable rice cultivation.

View Article and Find Full Text PDF

Micronutrient especially iron and zinc-enriched rice hold immense promise for sustainable and cost-effective solutions to overcome malnutrition. In this context, BCF population derived from cross between RP-Bio226 and Sampada was used to localize genomic region(s)/QTL(s) for grain Fe (iron) and Zn (zinc) content together with yield and yield-related traits. Genotyping of mapping population with 108 SSR markers resulted in a genetic map of 2317.

View Article and Find Full Text PDF
Article Synopsis
  • * Haplotype frequency data for various genes shows which combinations are most prevalent, helping pinpoint superior genetic profiles for traits like early flowering and grain thickness.
  • * The findings suggest that using haplotype-based breeding could lead to the development of next-generation rice varieties tailored to meet future food and nutrition needs.
View Article and Find Full Text PDF

Dry direct-seeded rice (DSR) is an alternative crop establishment method with less water and labor requirement through mechanization. It provides better opportunities for a second crop during the cropping season and therefore, a feasible alternative system to transplanted lowland rice. However, lodging is one of the major constraints in attaining high yield in DSR.

View Article and Find Full Text PDF

Finger millet grains contain exceptionally high levels of calcium which is much higher compared to other cereals and millets. Since calcium is an important macronutrient in human diet, it is necessary to explore the molecular basis of calcium accumulation in the seeds of finger millet. is a calcium sensor gene, having role in activating Ca exchanger protein by interaction with CBL proteins.

View Article and Find Full Text PDF

Strong seedling vigor is desirable trait in dry direct-seeded rice (DSR) for enhancing crop establishment and the ability to compete against weeds. A set of 253 BCF lines derived from cross between Swarna and Moroberekan was phenotyped for early vigor (EV) and 8 related traits ., early uniform emergence (EUE), shoot length (SHL), stem length (SL), shoot fresh weight (SFW), total fresh weight (TFW), shoot dry weight (SDW), total dry weight (TDW), and root dry weight (RDW).

View Article and Find Full Text PDF

Calcium is an essential macronutrient for plants and animals and plays an indispensable role in structure and signaling. Low dietary intake of calcium in humans has been epidemiologically linked to various diseases which can have serious health consequences over time. Major staple food-grains are poor source of calcium, however, finger millet [ (L.

View Article and Find Full Text PDF

Calcium (Ca) is an essential mineral for proper growth and development of plants as well as animals. In plants including cereals, calcium is deposited in seed during its development which is mediated by specialized Ca transporters. Common cereal seeds contain very low amounts of Ca while the finger millet (Eleusine coracana) contains exceptionally high amounts of Ca in seed.

View Article and Find Full Text PDF

Background: In finger millet, calcium is one of the important and abundant mineral elements. The molecular mechanisms involved in calcium accumulation in plants remains poorly understood. Transcriptome sequencing of genetically diverse genotypes of finger millet differing in grain calcium content will help in understanding the trait.

View Article and Find Full Text PDF

Background: The concept of DNA barcoding for species identification has gained considerable momentum in animals because of fairly successful species identification using cytochrome oxidase I (COI). In plants, matK and rbcL have been proposed as standard barcodes. However, barcoding in complex genera is a challenging task.

View Article and Find Full Text PDF