Publications by authors named "Um Kanta Aryal"

One key challenge in the development of viable organic photovoltaic devices is to design component molecules that do not degrade during combined exposure to oxygen and light. Such molecules should thus remain comparatively unreactive towards singlet molecular oxygen and not act as photosensitizers for the generation of this undesirable species. Here, novel redox-active chromophores that combine these two properties are presented.

View Article and Find Full Text PDF

The ternary-blend approach has the potential to enhance the power conversion efficiencies (PCEs) of polymer solar cells (PSCs) by providing complementary absorption and efficient charge generation. Unfortunately, most PSCs are processed with toxic halogenated solvents, which are harmful to human health and the environment. Herein, we report the addition of a nonfullerene electron acceptor 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3- d:2',3'- d']- s-indaceno[1,2- b:5,6- b']dithiophene (ITIC) to a binary blend (poly[4,8-bis(2-(4-(2-ethylhexyloxy)3-fluorophenyl)-5-thienyl)benzo[1,2- b:4,5- b']dithiophene- alt-1,3-bis(4-octylthien-2-yl)-5-(2-ethylhexyl)thieno[3,4- c]pyrrole-4,6-dione] (P1):[6,6]-phenyl-C-butyric acid methyl ester (PCBM), PCE = 8.

View Article and Find Full Text PDF

A novel polyelectrolyte containing triazine (TAZ) and benzodithiophene (BDT) scaffolds with polar phosphine oxide (P═O) and quaternary ammonium ions as pendant groups, respectively, in the polymer backbone (PBTAZPOBr) was synthesized to use it as a cathode interfacial layer (CIL) for polymer solar cell (PSC) application. Owing to the high electron affinity of the TAZ unit and P═O group, PBTAZPOBr could behave as an effective electron transport material. Due to the polar quaternary ammonium and P═O groups, the interfacial dipole moment created by PBTAZPOBr substantially reduced the work function of the metal cathode to afford better energy alignment in the device, thus enabling electron extraction and reducing recombination of excitons at the photoactive layer/cathode interface.

View Article and Find Full Text PDF