Publications by authors named "Ulysses G Johnson"

Trehalose is a non-reducing disaccharide that is the major sugar found in insect hemolymph fluid. Trehalose provides energy, and promotes growth, metamorphosis, stress recovery, chitin synthesis, and insect flight. Trehalase is the only enzyme responsible for the hydrolysis of trehalose, which makes it an attractive molecular target.

View Article and Find Full Text PDF

Organisms integrate circadian and metabolic signals to optimize substrate selection to survive starvation, yet precisely how this occurs is unclear. Here, we show that hepatocyte Period 1 (Per1) is selectively induced during fasting, and mice lacking hepatocyte Per1 fail to initiate autophagic flux, ketogenesis, and lipid accumulation. Transcriptomic analyses show failed induction of the fasting hepatokine Fgf21 in Per1-deficient mice, and single-nucleus multiome sequencing defines a putative responding hepatocyte subpopulation that fails to induce the chromatin accessibility near the Fgf21 locus.

View Article and Find Full Text PDF

The regulation of maternal mRNAs is essential for proper oogenesis, the production of viable gametes, and to avoid birth defects and infertility. Many oogenic RNA-binding proteins have been identified with roles in mRNA metabolism, some of which localize to dynamic ribonucleoprotein granules and others that appear dispersed. Here, we use a combination of in vitro condensation assays and the in vivo oogenesis model to characterize the properties of the conserved KH-domain MEX-3 protein and to identify novel regulators of MEX-3 and three other translational regulators.

View Article and Find Full Text PDF

Unlabelled: The regulation of maternal mRNAs is essential for proper oogenesis, the production of viable gametes, and to avoid birth defects and infertility. Many oogenic RNA-binding proteins have been identified with roles in mRNA metabolism, some of which localize to dynamic ribonucleoprotein granules and others that appear dispersed. Here, we use a combination of condensation assays and the oogenesis model to determine the intrinsic properties of the conserved KH-domain MEX-3 protein and to identify novel regulators of MEX-3 and the Lsm protein, CAR-1.

View Article and Find Full Text PDF

Protein lipidation dynamically controls protein localization and function within cellular membranes. A unique form of protein -fatty acylation in , termed protein -mycoloylation, involves the attachment of mycolic acids─unusually large and hydrophobic fatty acids─to serine residues of proteins in these organisms' outer mycomembrane. However, as with other forms of protein lipidation, the scope and functional consequences of protein -mycoloylation are challenging to investigate due to the inherent difficulties of enriching and analyzing lipidated peptides.

View Article and Find Full Text PDF

Tuberculosis (TB), caused by (Mtb), is the leading cause of death worldwide by infectious disease. Treatment of Mtb infection requires a six-month course of multiple antibiotics, an extremely challenging regimen necessitated by Mtb's ability to form drug-tolerant persister cells. Mtb persister formation is dependent on the trehalose catalytic shift, a stress-responsive metabolic remodeling mechanism in which the disaccharide trehalose is liberated from cell surface glycolipids and repurposed as an internal carbon source to meet energy and redox demands.

View Article and Find Full Text PDF