Publications by authors named "Ulyana Zubairova"

The thraustochytrids are a group of marine protists known for their significant ecological roles as decomposers and parasites as well as for their potential biotechnological applications, yet their evolutionary and structural diversity remains poorly understood. Our review critically examines the phylogeny of this taxa, utilizing available up-to-date knowledge and their taxonomic classifications. Additionally, advanced imaging techniques, including electron microscopy, are employed to explore the ultrastructural characteristics of these organisms, revealing key features that contribute to their adaptive capabilities in varying marine environments.

View Article and Find Full Text PDF

The epidermal leaf patterns of plants exhibit remarkable diversity in cell shapes, sizes, and arrangements, driven by environmental interactions that lead to significant adaptive changes even among closely related species. The Solanaceae family, known for its high diversity of adaptive epidermal structures, has traditionally been studied using qualitative phenotypic descriptions. To advance this, we developed a workflow combining multi-scale computer vision, image processing, and data analysis to extract digital descriptors for leaf epidermal cell morphology.

View Article and Find Full Text PDF

The innate immune system (IIS) is an ancient and essential defense mechanism that protects animals against a wide range of pathogens and diseases. Although extensively studied in mammals, our understanding of the IIS in other taxa remains limited. The zebrafish () serves as a promising model organism for investigating IIS-related processes, yet the immunogenetics of fish are not fully elucidated.

View Article and Find Full Text PDF

The innate immune system is the first line of defense in multicellular organisms. is widely considered a promising model for IIS-related research, with the most amount of scRNAseq data available among . We summarized the scRNAseq and spatial transcriptomics experiments related to the IIS for zebrafish and other from the GEO NCBI and the Single-Cell Expression Atlas.

View Article and Find Full Text PDF

In plants, water flows are the major driving force behind growth and play a crucial role in the life cycle. To study hydrodynamics, methods based on tracking small particles inside water flows attend a special place. Thanks to these tools, it is possible to obtain information about the dynamics of the spatial distribution of the flux characteristics.

View Article and Find Full Text PDF

The availability and intensity of sunlight are among the major factors of growth, development and metabolism in plants. However, excessive illumination disrupts the electronic balance of photosystems and leads to the accumulation of reactive oxygen species in chloroplasts, further mediating several regulatory mechanisms at the subcellular, genetic, and molecular levels. We carried out a comprehensive bioinformatic analysis that aimed to identify genetic systems and candidate transcription factors involved in the response to high light stress in L.

View Article and Find Full Text PDF

Single-cell technology is a relatively new and promising way to obtain high-resolution transcriptomic data mostly used for animals during the last decade. However, several scientific groups developed and applied the protocols for some plant tissues. Together with deeply-developed cell-resolution imaging techniques, this achievement opens up new horizons for studying the complex mechanisms of plant tissue architecture formation.

View Article and Find Full Text PDF

Bread wheat ( L.) is one of the most important agricultural plants wearing abiotic stresses, such as water deficit and cold, that cause its productivity reduction. Since resistance to abiotic factors is a multigenic trait, therefore modern genome-wide approaches can help to involve various genetic material in breeding.

View Article and Find Full Text PDF

The antioxidant system (AOS) maintains the optimal concentration of reactive oxygen species (ROS) in a cell and protects it against oxidative stress. In plants, the AOS consists of seven main classes of antioxidant enzymes, low-molecular antioxidants (e.g.

View Article and Find Full Text PDF

Background: Plant cell metabolism inevitably forms reactive oxygen species (ROS), which can damage cells or lead to their death. The antioxidant system (AOS) evolved to eliminate a high concentration of ROS. For plants, this system consists of the seven classes of antioxidant enzymes and antioxidant compounds.

View Article and Find Full Text PDF

Diffusion-reaction models are used to describe development processes in the framework of morphogen theory. The images of the concentration fields for the subset of the interacting morphogens are available. In order to interpret this data in terms of the model parameters, the inverse source problem is stated.

View Article and Find Full Text PDF

Background: Microscopic images are widely used in plant biology as an essential source of information on morphometric characteristics of the cells and the topological characteristics of cellular tissue pattern due to modern computer vision algorithms. High-resolution 3D confocal images allow extracting quantitative characteristics describing the cell structure of leaf epidermis. For some issues in the study of cereal leaves development, it is required to apply the staining techniques with fluorescent dyes and to scan rather large fragments consisting of several frames.

View Article and Find Full Text PDF

Understanding the principles and mechanisms of cell growth coordination in plant tissue remains an outstanding challenge for modern developmental biology. Cell-based modeling is a widely used technique for studying the geometric and topological features of plant tissue morphology during growth. We developed a quasi-one-dimensional model of unidirectional growth of a tissue layer in a linear leaf blade that takes cell autonomous growth mode into account.

View Article and Find Full Text PDF

The epidermis of a linear leaf, as in Poaceae, is established by parallel files of cells originating from the leaf base. Their feature is symplastic growth where neighboring cell walls adhere and do not slide along each other. We developed a simple mechanical cell-based model for symplastic growth of linear leaf blade.

View Article and Find Full Text PDF