Publications by authors named "Ulyana Cubeta"

When heated rapidly, glasses often devitrify heterogeneously, i.e., by a softening front that originates at the surface of an amorphous film.

View Article and Find Full Text PDF

Surface-facilitated, front-propagated softening of glassy materials is now a well-known phenomenon, which is common to stable vapor deposited glasses. As we demonstrate in our recent communication, this softening pathway is not unique to vapor-deposited vitreous phases and can be observed in ordinary melt-cooled glasses in the limit of high heating rates [Cubeta et al., J.

View Article and Find Full Text PDF

A common distinction between the ordinary glasses formed by melt cooling and the stable amorphous films formed by vapor deposition is the apparent mechanism of their devitrification. Using quasi-adiabatic, fast scanning calorimetry that is capable of heating rates in excess of 10 K s, we have investigated the softening kinetics of micrometer-scale, ordinary glass films of methylbenzene and 2-propanol. At the limit of high heating rates, the transformation mechanism of ordinary glasses is identical to that of their stable vapor-deposited counterparts.

View Article and Find Full Text PDF

Melting dynamics of micrometer scale, polycrystalline samples of isobutane, dimethyl ether, methyl benzene, and 2-propanol were investigated by fast scanning calorimetry. When films are superheated with rates in excess of 10 K s, the melting process follows zero-order, Arrhenius-like kinetics until approximately half of the sample has transformed. Such kinetics strongly imply that melting progresses into the bulk via a rapidly moving solid-liquid interface that is likely to originate at the sample's surface.

View Article and Find Full Text PDF