Background: The tumor suppressor TP53 (p53) is frequently mutated, and its downstream effectors inactivated in many cancers, including glioblastoma (GBM). In tumors with wild-type status, p53 function is frequently attenuated by alternate mechanisms including amplification and overexpression of its key negative regulator, MDM2. We investigated the efficacy of the MDM2 inhibitor, BI-907828, in GBM patient-derived brain tumor stem cells (BTSCs) with different amplification statuses of MDM2, in vitro and in orthotopic xenograft models.
View Article and Find Full Text PDFWe recently reported that genetic or pharmacological inhibition of insulin-like growth factor receptor (IGF-1R) slows DNA replication and induces replication stress by downregulating the regulatory subunit RRM2 of ribonucleotide reductase, perturbing deoxynucleotide triphosphate (dNTP) supply. Aiming to exploit this effect in therapy we performed a compound screen in five breast cancer cell lines with IGF neutralising antibody xentuzumab. Inhibitor of checkpoint kinase CHK1 was identified as a top screen hit.
View Article and Find Full Text PDFInhibition of IGF receptor (IGF1R) delays repair of radiation-induced DNA double-strand breaks (DSB), prompting us to investigate whether IGF1R influences endogenous DNA damage. Here we demonstrate that IGF1R inhibition generates endogenous DNA lesions protected by 53BP1 bodies, indicating under-replicated DNA. In cancer cells, inhibition or depletion of IGF1R delayed replication fork progression accompanied by activation of ATR-CHK1 signaling and the intra-S-phase checkpoint.
View Article and Find Full Text PDFAndrogen deprivation therapy and second-generation androgen receptor signaling inhibitors such as enzalutamide are standard treatments for advanced/metastatic prostate cancer. Unfortunately, most men develop resistance and relapse; signaling via insulin-like growth factor (IGF) has been implicated in castration-resistant prostate cancer. We evaluated the antitumor activity of xentuzumab (IGF ligand-neutralizing antibody), alone and in combination with enzalutamide, in prostate cancer cell lines (VCaP, DuCaP, MDA PCa 2b, LNCaP, and PC-3) using established assays, and , using LuCaP 96CR, a prostate cancer patient-derived xenograft (PDX) model.
View Article and Find Full Text PDFBone metastases are a frequent complication of cancer that are associated with considerable morbidity. Current treatments may temporarily palliate the symptoms of bone metastases but often fail to delay their progression. Bones provide a permissive environment because they are characterized by dynamic turnover, secreting factors required for bone maintenance but also stimulating the establishment and growth of metastases.
View Article and Find Full Text PDFInternalization of ligand-activated type I IGF receptor (IGF1R) is followed by recycling to the plasma membrane, degradation or nuclear translocation. Nuclear IGF1R reportedly associates with clinical response to IGF1R inhibitory drugs, yet its role in the nucleus is poorly characterized. Here, we investigated the significance of nuclear IGF1R in clinical cancers and cell line models.
View Article and Find Full Text PDFFocal adhesion kinase (FAK), a non-receptor tyrosine kinase, has attracted interest as a target for pharmacological intervention in malignant diseases. Here, we describe BI 853520, a novel ATP-competitive inhibitor distinguished by high potency and selectivity. In vitro, the compound inhibits FAK autophosphorylation in PC-3 prostate carcinoma cells with an IC of 1 nmol/L and blocks anchorage-independent proliferation of PC-3 cells with an EC of 3 nmol/L, whereas cells grown in conventional surface culture are 1000-fold less sensitive.
View Article and Find Full Text PDFBreast cancer remains the leading cause of cancer death in women owing to metastasis and the development of resistance to established therapies. Macrophages are the most abundant immune cells in the breast tumor microenvironment and can both inhibit and support cancer progression. Thus, gaining a better understanding of how macrophages support cancer could lead to the development of more effective therapies.
View Article and Find Full Text PDFDespite a strong preclinical rationale for targeting the insulin-like growth factor (IGF) axis in cancer, clinical studies of IGF-1 receptor (IGF-1R)-targeted monotherapies have been largely disappointing, and any potential success has been limited by the lack of validated predictive biomarkers for patient enrichment. A large body of preclinical evidence suggests that the key role of the IGF axis in cancer is in driving treatment resistance, via general proliferative/survival mechanisms, interactions with other mitogenic signaling networks, and class-specific mechanisms such as DNA damage repair. Consequently, combining IGF-targeted agents with standard cytotoxic agents, other targeted agents, endocrine therapies, or immunotherapies represents an attractive therapeutic approach.
View Article and Find Full Text PDFMol Cancer Ther
October 2017
Clinical studies of pharmacologic agents targeting the insulin-like growth factor (IGF) pathway in unselected cancer patients have so far demonstrated modest efficacy outcomes, with objective responses being rare. As such, the identification of selection biomarkers for enrichment of potential responders represents a high priority for future trials of these agents. Several reports have described high IGF2 expression in a subset of colorectal cancers, with focal amplification being responsible for some of these cases.
View Article and Find Full Text PDFScaffold modification based on Wang's pioneering MDM2-p53 inhibitors led to novel, chemically stable spiro-oxindole compounds bearing a spiro[3H-indole-3,2'-pyrrolidin]-2(1H)-one scaffold that are not prone to epimerization as observed for the initial spiro[3H-indole-3,3'-pyrrolidin]-2(1H)-one scaffold. Further structure-based optimization inspired by natural product architectures led to a complex fused ring system ideally suited to bind to the MDM2 protein and to interrupt its protein-protein interaction (PPI) with TP53. The compounds are highly selective and show in vivo efficacy in a SJSA-1 xenograft model even when given as a single dose as demonstrated for 4-[(3S,3'S,3'aS,5'R,6'aS)-6-chloro-3'-(3-chloro-2-fluorophenyl)-1'-(cyclopropylmethyl)-2-oxo-1,2,3',3'a,4',5',6',6'a-octahydro-1'H-spiro[indole-3,2'-pyrrolo[3,2-b]pyrrole]-5'-yl]benzoic acid (BI-0252).
View Article and Find Full Text PDFTumor-associated macrophages (TAM) and myofibroblasts are key drivers in cancer that are associated with drug resistance in many cancers, including pancreatic ductal adenocarcinoma (PDAC). However, our understanding of the molecular mechanisms by which TAM and fibroblasts contribute to chemoresistance is unclear. In this study, we found that TAM and myofibroblasts directly support chemoresistance of pancreatic cancer cells by secreting insulin-like growth factors (IGF) 1 and 2, which activate insulin/IGF receptors on pancreatic cancer cells.
View Article and Find Full Text PDF