Direct-write electron-beam lithography has been used to fabricate low-voltage p-channel and n-channel organic thin-film transistors with channel lengths as small as 200 nm and gate-to-contact overlaps as small as 100 nm on glass and on flexible transparent polymeric substrates. The p-channel transistors have on/off current ratios as large as 4 × 10 and subthreshold swings as small as 70 mV/decade, and the n-channel transistors have on/off ratios up to 10 and subthreshold swings as low as 80 mV/decade. These are the largest on/off current ratios reported to date for nanoscale organic transistors.
View Article and Find Full Text PDFControlled local fabrication of three-dimensional (3D) nanostructures is important to explore and enhance the function of single nanodevices, but is experimentally challenging. We present a scheme based on e-beam lithography (EBL) written seeds, and glancing angle deposition (GLAD) grown structures to create nanoscale objects with defined shapes but in aperiodic arrangements. By using a continuous sacrificial corral surrounding the features of interest we grow isolated 3D nanostructures that have complex cross-sections and sidewall morphology that are surrounded by zones of clean substrate.
View Article and Find Full Text PDF