Background: Left prefrontal intermittent theta-burst stimulation (iTBS) has emerged as a safe and effective transcranial magnetic stimulation (TMS) treatment protocol in depression. Though network effects after iTBS have been widely studied, the deeper mechanistic understanding of target engagement is still at its beginning. Here, we investigate the feasibility of a novel integrated TMS-fMRI setup and accelerated echo planar imaging protocol to directly observe the immediate effects of full iTBS treatment sessions.
View Article and Find Full Text PDFCognitive deficits are a core symptom of schizophrenia, but research on their neural underpinnings has been challenged by the heterogeneity in deficits' severity among patients. Here, we address this issue by combining logistic regression and random forest to classify two neuropsychological profiles of patients with high (HighCog) and low (LowCog) cognitive performance in two independent samples. We based our analysis on the cortical features grey matter volume (VOL), cortical thickness (CT), and mean curvature (MC) of N = 57 patients (discovery sample) and validated the classification in an independent sample (N = 52).
View Article and Find Full Text PDFTranscranial direct current stimulation (tDCS) of the prefrontal cortex might beneficially influence neurocognitive dysfunctions associated with major depressive disorder (MDD). However, previous studies of neurocognitive effects of tDCS have been inconclusive. In the current study, we analyzed longitudinal, neurocognitive data from 101 participants of a randomized controlled multicenter trial (DepressionDC), investigating the efficacy of bifrontal tDCS (2 mA, 30 min/d, for 6 weeks) in patients with MDD and insufficient response to selective serotonin reuptake inhibitors (SSRI).
View Article and Find Full Text PDFIntroduction: A neurobiological feature of Fetal Alcohol Spectrum Disorder (FASD) is a global decrease in neuronal connectivity, which leads to significant impairments in everyday functionality. Non-invasive repetitive transcranial magnetic stimulation (rTMS) could potentially positively influence neuronal plasticity but has not yet been studied in FASD. The present trial addresses this gap, making it the first-ever study of rTMS in FASD.
View Article and Find Full Text PDF