Denitrifying bioreactors can be effective for removing nitrate from agricultural tile drainage; however, questions about cold springtime performance persist. The objective of this study was to improve the nitrate removal rate (NRR) of denitrifying bioreactors at warm and cold temperatures using agriculturally derived media rather than wood chips (WC). Corn ( L.
View Article and Find Full Text PDFBioprocess Biosyst Eng
August 2014
Clostridium thermocellum/Clostridium thermolacticum co-culture fermentation has been shown to be a promising way of producing ethanol from several carbohydrates. In this research, immobilization techniques using sodium alginate and alkali pretreatment were successfully applied on this co-culture to improve the bio-ethanol fermentation performance during consolidated bio-processing (CBP). The ethanol yield obtained increased by over 60 % (as a percentage of the theoretical maximum) as compared to free cell fermentation.
View Article and Find Full Text PDFBrown rot fungi Gloeophyllum trabeum and Postia placenta were used to degrade aspen, spruce, or corn stover over 16 weeks. Decayed residues were saccharified using commercial cellulases or brown rot fungal extracts, loaded at equal but low endoglucanase titers. Saccharification was then repeated for high-yield samples using full strength commercial cellulases.
View Article and Find Full Text PDFBioresour Technol
November 2011
Saccharification is one of the most critical steps in producing lignocellulose-based bio-ethanol through consolidated bioprocessing (CBP). However, extreme pH and ethanol concentration are commonly considered as potential inhibitors for the application of Clostridium sp. in CBP.
View Article and Find Full Text PDFRelease of sugars from lignocellulosic biomass is inefficient because lignin, an aromatic polymer, blocks access of enzymes to the sugar polymers. Pretreatments remove lignin and disrupt its structure, thereby enhancing sugar release. In previous work, enzymatically generated peracetic acid was used to pretreat aspen wood.
View Article and Find Full Text PDFPulp and paper mills represent a major platform to use more effectively an abundant, renewable bio-resource - wood. Modification of the modern day pulp mills into integrated forest biorefineries (IFBR) presents an excellent opportunity to produce, in addition to valuable cellulose fiber, co-products including fuel grade ethanol and additional energy, thus resulting in increased revenue streams and profitability and potentially lower the greenhouse gas emissions. A process model to simulate the integrate forest biorefinery manufacturing pulp and other co-products has been developed.
View Article and Find Full Text PDFSwitchgrass (Panicum virgatum), alfalfa stems (Medicago sativa), second year growth hybrid poplar (Populus) and willow (Salix spp.) were examined to determine fiber characteristics, pulping behavior and paper properties. Alfalfa stems and switchgrass both showed length weighted average fiber length (LWW) of 0.
View Article and Find Full Text PDFThe recalcitrance of lignocellulosic biomass to enzymatic release of sugars (saccharification) currently limits its use as feedstock for biofuels. Enzymatic hydrolysis of untreated aspen wood releases only 21.8% of the available sugars due primarily to the lignin barrier.
View Article and Find Full Text PDFAppl Biochem Biotechnol
May 2009
The key to expanding the energy supply, increasing energy security, and reducing the dependency on foreign oil is to develop advanced technologies to efficiently transform our renewable bioresources into domestically produced bioenergy and bioproducts. Conventional biorefineries, i.e.
View Article and Find Full Text PDF