Background: The histological origin of the Ewing's family of tumors (EFT) is still not clear. Since these small cell bone tumors may originate from osteogenic stem cells, the presence of the CD99/MIC2 antigen, known to be overexpressed in EFT, was studied in a human osteoblast cell line in response to differentiation inducers.
Methods: The HBA-71 monoclonal antibody directed to the CD99/MIC2 antigen was used to stain a human osteoblast cell line as well as the two EFT cell lines KAL and EW-2 after pretreatment of the cells with the differentiation inducers calcitriol and the histone deacetylase (HDAC) inhibitors sodium butyrate (NaB), sodium phenylacetate (NaPA) as well as N, N'-hexamethylen-bis-acetamide (HMBA).
Intermittent androgen suppression (IAS) therapy for prostate cancer patients attempts to maintain the hormone dependence of the tumor cells by cycles alternating between androgen suppression (AS) and treatment cessation till a certain prostate-specific antigen (PSA) threshold is reached. Side effects are expected to be reduced, compared to standard continuous androgen suppression (CAS) therapy. The present study examined the effect of IAS on bone metabolism by determinations of serum procollagen I N-terminal peptide (PINP), a biochemical marker of collagen synthesis.
View Article and Find Full Text PDFPancreatic adenocarcinoma is a devastating disease characterized by early dissemination and poor prognosis. These solid tumors express receptors for neuropeptides like neurotensin (NT) or epidermal growth factor (EGF) and exhibit acidic regions when grown beyond a certain size. We previously demonstrated increases in intracellular Ca2+ levels, intracellular pH and interleukin-8 (IL-8) secretion in BxPC-3 and PANC-1 pancreatic cancer cells in response to a stable NT analog.
View Article and Find Full Text PDF