The ability to predict quantitative trait phenotypes from molecular polymorphism data will revolutionize evolutionary biology, medicine and human biology, and animal and plant breeding. Efforts to map quantitative trait loci have yielded novel insights into the biology of quantitative traits, but the combination of individually significant quantitative trait loci typically has low predictive ability. Utilizing all segregating variants can give good predictive ability in plant and animal breeding populations, but gives little insight into trait biology.
View Article and Find Full Text PDFObtaining accurate predictions of unobserved genetic or phenotypic values for complex traits in animal, plant, and human populations is possible through whole-genome prediction (WGP), a combined analysis of genotypic and phenotypic data. Because the underlying genetic architecture of the trait of interest is an important factor affecting model selection, we propose a new strategy, termed BLUP|GA (BLUP-given genetic architecture), which can use genetic architecture information within the dataset at hand rather than from public sources. This is achieved by using a trait-specific covariance matrix ( T: ), which is a weighted sum of a genetic architecture part ( S: matrix) and the realized relationship matrix ( G: ).
View Article and Find Full Text PDFUtilizing the whole genomic variation of complex traits to predict the yet-to-be observed phenotypes or unobserved genetic values via whole genome prediction (WGP) and to infer the underlying genetic architecture via genome wide association study (GWAS) is an interesting and fast developing area in the context of human disease studies as well as in animal and plant breeding. Though thousands of significant loci for several species were detected via GWAS in the past decade, they were not used directly to improve WGP due to lack of proper models. Here, we propose a generalized way of building trait-specific genomic relationship matrices which can exploit GWAS results in WGP via a best linear unbiased prediction (BLUP) model for which we suggest the name BLUP|GA.
View Article and Find Full Text PDFPredicting organismal phenotypes from genotype data is important for plant and animal breeding, medicine, and evolutionary biology. Genomic-based phenotype prediction has been applied for single-nucleotide polymorphism (SNP) genotyping platforms, but not using complete genome sequences. Here, we report genomic prediction for starvation stress resistance and startle response in Drosophila melanogaster, using ∼2.
View Article and Find Full Text PDFGenomic data provide a valuable source of information for modeling covariance structures, allowing a more accurate prediction of total genetic values (GVs). We apply the kriging concept, originally developed in the geostatistical context for predictions in the low-dimensional space, to the high-dimensional space spanned by genomic single nucleotide polymorphism (SNP) vectors and study its properties in different gene-action scenarios. Two different kriging methods ["universal kriging" (UK) and "simple kriging" (SK)] are presented.
View Article and Find Full Text PDF