Publications by authors named "Ulrike Krewer"

Li-ion batteries have a potential risk of thermal runaway. Current safety evaluations in academia and industry rely on experiments or semi-empirical simulations. This limits the understanding of processes leading to or occurring during thermal runaway and how chemical species and impurities can impact them.

View Article and Find Full Text PDF

Due to its high energy density, lithium metal is a promising electrode for future energy storage. However, its practical capacity, cyclability and safety heavily depend on controlling its reactivity in contact with liquid electrolytes, which leads to the formation of a solid electrolyte interphase (SEI). In particular, there is a lack of fundamental mechanistic understanding of how the electrolyte composition impacts the SEI formation and its governing processes.

View Article and Find Full Text PDF

The microkinetics of the electrocatalytic oxygen evolution reaction substantially determines the performance in proton-exchange membrane water electrolysis. State-of-the-art nanoparticulated rutile IrO electrocatalysts present an excellent trade-off between activity and stability due to the efficient formation of intermediate surface species. To reveal and analyze the interaction of individual surface processes, a detailed dynamic microkinetic model approach is established and validated using cyclic voltammetry.

View Article and Find Full Text PDF

The performance of high-rate supercapacitors requires fine morphological and electrical properties of the electrode. Polyaniline (PANI), as one of the most promising materials for energy storage, shows different behaviour on different substrates. The present study reports on the surface modification of fluorine doped tin oxide (FTO) with the sodium phytate doped PANI without any binder and its utilization as a novel current collector in symmetric supercapacitor devices.

View Article and Find Full Text PDF

Traces of species in batteries are known to impact battery performance. The effects of gas species, although often reported in the electrolyte and evolving during operation, have not been systematically studied to date and are therefore barely understood. This study reveals and compares the effects of different gases on the charge-discharge characteristics, cycling stability and impedances of lithium-ion batteries.

View Article and Find Full Text PDF

In the field of advanced energy storage, nanostructured Polyaniline (PANI) based materials hold a special place. Extensive studies have been done on the application of PANI in supercapacitors, however, the structure-property relationship of these materials is still not understood. This paper presents a detailed characterization of the novel sodium phytate doped 3D PANI nanofibers anchored on different types of carbon paper for application in supercapacitors.

View Article and Find Full Text PDF

The major drawbacks of the conventional methods for preparing polyaniline (PANI) are the large consumptions of toxic chemicals and long process durations. This paper presents a remarkably simple and green route for the chemical oxidative synthesis of PANI nanofibers, utilizing sodium phytate as a novel and environmentally friendly plant derived dopant. The process shows a remarkable reduction in the synthesis time and usage of toxic chemicals with good dispersibility and exceedingly high conductivity up to 10 S cm of the resulting PANI at the same time.

View Article and Find Full Text PDF

Anion-exchange membrane (AEM) degradation during fuel cell operation represents the main challenge that hampers the implementation of AEM fuel cells (AEMFCs). Reported degradation values of AEMs are difficult to reproduce as no standard methods are used. The present use of different techniques based on exposure of membranes to aqueous KOH solutions under different conditions and measuring different outputs during time does not allow for a reliable and meaningful comparison of reported degradation data of different AEMs.

View Article and Find Full Text PDF

The current production from the alkaline methanol electro-oxidation reaction does not reach a steady state on a smooth platinum catalyst under potentiostatic conditions. We investigated two possible explanations for this phenomenon: changes on the catalyst surface and changes in the solution near the electrode. In situ Fourier transform infrared spectroscopy experiments were conducted to evaluate the adsorbed species on the catalyst surface and a simulation model was set up to describe the changes of concentrations inside the solution.

View Article and Find Full Text PDF

The mechanism of the alkaline methanol electrooxidation reaction on platinum is complex and not fully understood. However, a better understanding will facilitate reaching the theoretical performance of an alkaline methanol fuel cell. Cyclic voltammetry is an often used method to investigate the mechanism of electrochemical reactions.

View Article and Find Full Text PDF

The synthesis of promising nanocomposite materials can always be tricky and depends a lot on the method of synthesis itself. Developing such synthesis routes, which are not only simple but also can effectively catch up the synergy of the compositing material, is definitely a worthy contribution towards nanomaterial science. Carbon-based materials, such as graphene oxide, and conjugative polymers, such as conductive polyaniline, are considered materials of the 21st century.

View Article and Find Full Text PDF

Oxygen depolarized cathodes (ODCs) are key components of alkaline fuel cells and metal-air batteries or of chlor-alkaline electrolysis, but suffer from limited oxygen availability at the reaction zone. Dynamic analysis is a highly suitable approach to identify the underlying causes, especially the limiting steps and process interactions in such gas diffusion electrodes. Herein, a one-dimensional, dynamic, three-phase model for analyzing the oxygen reduction reaction in silver-based ODCs is presented.

View Article and Find Full Text PDF

The power-to-ammonia concept allows for the production of ammonia, one of the most produced inorganic chemicals, from air, water and (renewable) electricity. However, power-to-ammonia requires flexible operation for use with a directly intermittent renewable energy supply. In this paper, we systematically analyse the operating envelope for steady-state operation of the three bed autothermic Haber-Bosch reactor system for power-to-ammonia by pseudo-homogeneous model.

View Article and Find Full Text PDF

Today's highly competitive pharmaceutical industry is in dire need of an accelerated transition from the drug development phase to the drug production phase. At the heart of this transition are chemical reactors that facilitate the synthesis of active pharmaceutical ingredients (APIs) and whose design can affect subsequent processing steps. Inspired by this challenge, we present a model-based approach for systematic reactor design.

View Article and Find Full Text PDF

In the future, (electro-)chemical catalysts will have to be more tolerant towards a varying supply of energy and raw materials. This is mainly due to the fluctuating nature of renewable energies. For example, power-to-chemical processes require a shift from steady-state operation towards operation under dynamic reaction conditions.

View Article and Find Full Text PDF

A novel combination of in operando X-ray tomography and model-based analysis of zinc air batteries is introduced. Using this approach the correlation between the three-dimensional morphological properties of the electrode - on the one hand - and the electrochemical properties of the battery - on the other hand is revealed. In detail, chemical dissolution of zinc particles and the electrode volume were investigated non-destructively during battery operation by X-ray tomography (applying a spatial resolution of 9 μm), while simulation yielded cell potentials of each electrode and allows for the prediction of long-term operation behavior.

View Article and Find Full Text PDF

Fuel cells can convert the energy that is chemically stored in a compound into electrical energy with high efficiency. Hydrogen could be the first choice for chemical energy storage, but its utilization is limited due to storage and transport difficulties. Carbon-containing fuels store chemical energy with significantly higher energy density, which makes them excellent energy carriers.

View Article and Find Full Text PDF