Persistent latent HIV-1 reservoirs pose a major barrier for combinatorial antiretroviral therapy (cART) to achieve eradication of the virus. A variety of mechanisms likely contribute to HIV-1 persistence, including establishment of post-integration latency in resting CD4+ T-lymphocytes, the proliferation of these latently infected cells, and the induced or spontaneous reactivation of latent virus. To elucidate the mechanisms of latency and to investigate therapeutic strategies for reactivating and purging the latent reservoir, investigators have developed in vitro models of HIV-1 latency using primary CD4+ T-lymphocytes and CD4+ T-cell lines.
View Article and Find Full Text PDFCurrent HIV-1 gene therapy approaches aim at stopping the viral life cycle at its earliest steps, such as entry or immediate postentry events. Among the most widely adopted strategies are CCR5 downregulation/knockout and the use of broadly neutralizing antibodies. However, the long-term efficacy and side effects are still unclear.
View Article and Find Full Text PDFSeveral methods for the detection of RNA have been developed over time. For small RNA detection, a stem-loop reverse primer-based protocol relying on TaqMan RT-PCR has been described. This protocol requires an individual specific TaqMan probe for each target RNA and, hence, is highly cost-intensive for experiments with small sample sizes or large numbers of different samples.
View Article and Find Full Text PDFHIV-1 causes AIDS, a syndrome that affects millions of people globally. Existing HAART is efficient in slowing down disease progression but cannot eradicate the virus. Furthermore the severity of the side effects and the emergence of drug-resistant mutants call for better therapy.
View Article and Find Full Text PDFDespite the importance of microRNAs (miRs) for regulation of the delicate balance between cell proliferation and death, evidence for their specific involvement during death receptor (DR)-mediated apoptosis is scarce. Transfection with miR-133b rendered resistant HeLa cells sensitive to tumor necrosis factor-alpha (TNFα)-induced cell death. Similarly, miR-133b caused exacerbated proapoptotic responses to TNF-related apoptosis-inducing ligand (TRAIL) or an activating antibody to Fas/CD95.
View Article and Find Full Text PDFRNA interference (RNAi)-mediated knockdown of target gene expression represents a powerful approach for functional genomics and therapeutic applications. However, for T lymphocytes, central regulators of immunity and immunopathologies, the application of RNAi has been limited due to the lack of efficient small interfering RNA (siRNA) delivery protocols, and an inherent inefficiency of the RNAi machinery itself. Here, we use nucleofection, an optimized electroporation approach, to deliver siRNA into primary T lymphocytes with high efficiency and negligible impairment of cell function.
View Article and Find Full Text PDF