The antibiotic roseoflavin is a riboflavin (vitamin B) analog. One step of the roseoflavin biosynthetic pathway is catalyzed by the phosphatase RosC, which dephosphorylates 8-demethyl-8-amino-riboflavin-5'-phosphate (AFP) to 8-demethyl-8-amino-riboflavin (AF). RosC also catalyzes the potentially cell-damaging dephosphorylation of the AFP analog riboflavin-5'-phosphate also called "flavin mononucleotide" (FMN), however, with a lower efficiency.
View Article and Find Full Text PDFMethylene-tetrahydropterin reductases catalyze the reduction of a methylene to a methyl group bound to a reduced pterin as C carrier in various one-carbon (C) metabolisms. F-dependent methylene-tetrahydromethanopterin (methylene-HMPT) reductase (Mer) and the flavin-independent methylene-tetrahydrofolate (methylene-HF) reductase (Mfr) use a ternary complex mechanism for the direct transfer of a hydride from FH and NAD(P)H to the respective methylene group, whereas FAD-dependent methylene-HF reductase (MTHFR) uses FAD as prosthetic group and a ping-pong mechanism to catalyze the reduction of methylene-HF. A ternary complex structure and a thereof derived catalytic mechanism of MTHFR is available, while no ternary complex structures of Mfr or Mer are reported.
View Article and Find Full Text PDFFAD-independent methylene-tetrahydrofolate (methylene-H F) reductase (Mfr), recently identified in mycobacteria, catalyzes the reduction of methylene-H F to methyl-H F with NADH as hydride donor by a ternary complex mechanism. This biochemical reaction corresponds to that of the ubiquitous FAD-dependent methylene-H F reductase (MTHFR), although the latter uses a ping-pong mechanism with the prosthetic group as intermediate hydride carrier. Comparative genomics and genetic analyses indicated that Mfr is indispensable for the growth of Mycobacterium tuberculosis, which lacks the MTHFR encoding gene.
View Article and Find Full Text PDFAnaerobic toluene degradation involves β-oxidation of the first intermediate (R)-2-benzylsuccinate to succinyl-CoA and benzoyl-CoA. Here, we characterize the last enzyme of this pathway, (S)-2-benzoylsuccinyl-CoA thiolase (BbsAB). Although benzoylsuccinyl-CoA is not available for enzyme assays, the recombinantly produced enzymes from two different species showed the reverse activity, benzoylsuccinyl-CoA formation from benzoyl-CoA and succinyl-CoA.
View Article and Find Full Text PDFThe biologically important, FAD-containing acyl-coenzyme A (CoA) dehydrogenases (ACAD) usually catalyze the anti-1,2-elimination of a proton and a hydride of aliphatic CoA thioesters. Here, we report on the structure and function of an ACAD from anaerobic bacteria catalyzing the unprecedented 1,4-elimination at C3 and C6 of cyclohex-1-ene-1-carboxyl-CoA (Ch1CoA) to cyclohex-1,5-diene-1-carboxyl-CoA (Ch1,5CoA) and at C3 and C4 of the latter to benzoyl-CoA. Based on high-resolution Ch1CoA dehydrogenase crystal structures, the unorthodox reactivity is explained by the presence of a catalytic aspartate base (D91) at C3, and by eliminating the catalytic glutamate base at C1.
View Article and Find Full Text PDFMany bacteria and archaea employ a novel pathway of sulfur oxidation involving an enzyme complex that is related to the heterodisulfide reductase (Hdr or HdrABC) of methanogens. As a first step in the biochemical characterization of Hdr-like proteins from sulfur oxidizers (sHdr), we structurally analyzed the recombinant sHdrA protein from the Alphaproteobacterium Hyphomicrobium denitrificans at 1.4 Å resolution.
View Article and Find Full Text PDFNADP-dependent methylene-tetrahydromethanopterin (methylene-HMPT) dehydrogenase (MtdA) catalyzes the reversible dehydrogenation of methylene-HMPT to form methenyl-HMPT by using NADP as a hydride acceptor. This hydride transfer reaction is involved in the oxidative metabolism from formaldehyde to CO in methylotrophic and methanotrophic bacteria. Here, we report on the crystal structures of the ternary MtdA-substrate complexes from Methylorubrum extorquens AM1 obtained in open and closed forms.
View Article and Find Full Text PDFHydride transfers play a crucial role in a multitude of biological redox reactions and are mediated by flavin, deazaflavin or nicotinamide adenine dinucleotide cofactors at standard redox potentials ranging from 0 to -340 mV. 2-Naphthoyl-CoA reductase, a key enzyme of oxygen-independent bacterial naphthalene degradation, uses a low-potential one-electron donor for the two-electron dearomatization of its substrate below the redox limit of known biological hydride transfer processes at E°' = -493 mV. Here we demonstrate by X-ray structural analyses, QM/MM computational studies, and multiple spectroscopy/activity based titrations that highly cooperative electron transfer (n = 3) from a low-potential one-electron (FAD) to a two-electron (FMN) transferring flavin cofactor is the key to overcome the resonance stabilized aromatic system by hydride transfer in a highly hydrophobic pocket.
View Article and Find Full Text PDFFlavin-based electron bifurcation (FBEB) is a recently discovered mode of energy coupling in anaerobic microorganisms. The electron-bifurcating caffeyl-CoA reductase (CarCDE) catalyzes the reduction of caffeyl-CoA and ferredoxin by oxidizing NADH. The 3.
View Article and Find Full Text PDFCommon structural elements in proteins such as α-helices or β-sheets are characterized by uniformly repeating, energetically favorable main chain conformations which additionally exhibit a completely saturated hydrogen-bonding network of the main chain NH and CO groups. Although polyproline or polyglycine type II helices (PP or PG ) are frequently found in proteins, they are not considered as equivalent secondary structure elements because they do not form a similar self-contained hydrogen-bonding network of the main chain atoms. In this context our finding of an unusual motif of glycine-rich PG -like helices in the structure of the acetophenone carboxylase core complex is of relevance.
View Article and Find Full Text PDFDegradation of the aromatic ketone acetophenone is initiated by its carboxylation to benzoylacetate catalyzed by acetophenone carboxylase (Apc) in a reaction dependent on the hydrolysis of two ATP to ADP and P. Apc is a large protein complex which dissociates during purification into a heterooctameric Apc(αα'βγ) core complex of 482 kDa and Apcε of 34 kDa. In this report, we present the X-ray structure of the Apc(αα'βγ) core complex from Aromatoleum aromaticum at ca.
View Article and Find Full Text PDF8-demethyl-8-aminoriboflavin-5'-phosphate (AFP) synthase (RosB) catalyzes the key reaction of roseoflavin biosynthesis by forming AFP from riboflavin-5'-phosphate (RP) and glutamate via the intermediates 8-demethyl-8-formylriboflavin-5'-phosphate (OHC-RP) and 8-demethyl-8-carboxylriboflavin-5'-phosphate (HO C-RP). To understand this reaction in which a methyl substituent of an aromatic ring is replaced by an amine we structurally characterized RosB in complex with OHC-RP (2.0 Å) and AFP (1.
View Article and Find Full Text PDFNADH-dependent reduced ferredoxin:NADP oxidoreductase (NfnAB) is found in the cytoplasm of various anaerobic bacteria and archaea. The enzyme reversibly catalyzes the endergonic reduction of ferredoxin with NADPH driven by the exergonic transhydrogenation from NADPH onto NAD(+). Coupling is most probably accomplished via the mechanism of flavin-based electron bifurcation.
View Article and Find Full Text PDFThe molybdenum storage protein (MoSto) can store more than 100 Mo or W atoms as discrete polyoxometalate (POM) clusters. Here, we describe the three POM cluster sites along the threefold axis of the protein complex based on four X-ray structures with slightly different polyoxomolybdate compositions between 1.35 and 2 Å resolution.
View Article and Find Full Text PDFTerpenoid precursor biosynthesis occurs in human and many pathogenic organisms via the mevalonate and 2-C-methyl-d-erythritol-4-phosphate (MEP) pathways, respectively. We determined the X-ray structure of the Fe/S containing (E)-4-hydroxy-3-methyl-but-2-enyl-diphosphate reductase (LytB) of the pathogenic protozoa Plasmodium falciparum which catalyzes the terminal step of the MEP pathway. The cloverleaf fold and the active site of P.
View Article and Find Full Text PDFATP sulfurylase (ATPS) catalyzes a key reaction in the global sulfur cycle by reversibly converting inorganic sulfate (SO4 (2-)) with ATP to adenosine 5'-phosphosulfate (APS) and pyrophosphate (PPi). In this work we report on the sat encoded dissimilatory ATP sulfurylase from the sulfur-oxidizing purple sulfur bacterium Allochromatium vinosum. In this organism, the sat gene is located in one operon and co-transcribed with the aprMBA genes for membrane-bound APS reductase.
View Article and Find Full Text PDFAutotrophic members of the Sulfolobales (crenarchaeota) use the 3-hydroxypropionate/4-hydroxybutyrate cycle to assimilate CO2 into cell material. The product of the initial acetyl-CoA carboxylation with CO2, malonyl-CoA, is further reduced to malonic semialdehyde by an NADPH-dependent malonyl-CoA reductase (MCR); the enzyme also catalyzes the reduction of succinyl-CoA to succinic semialdehyde onwards in the cycle. Here, we present the crystal structure of Sulfolobus tokodaii malonyl-CoA reductase in the substrate-free state and in complex with NADP(+) and CoA.
View Article and Find Full Text PDFUnlabelled: Flavohemoglobins (flavoHbs) serve various microorganisms as the major protective enzymes against NO˙-mediated toxicity. FlavoHbs dominantly function as an NO˙ dioxygenase (O2+ NO→ NO3 -), the required electron being shuttled from NAD(P)H via FAD to the heme iron. The X-ray structures of the flavoHb from Saccharomyces cerevisae presented in complex with an unknown small ligand (Yhb) and with econazole (Yhb(E) ) at 2.
View Article and Find Full Text PDFMethenyltetrahydromethanopterin (methenyl-H(4)MPT(+)) cyclohydrolase (Mch) catalyzes the interconversion of methenyl-H(4)MPT(+) and formyl-H(4)MPT in the one-carbon energy metabolism of methanogenic, methanotrophic, and sulfate-reducing archaea and of methylotrophic bacteria. To understand the catalytic mechanism of this reaction, we kinetically characterized site-specific variants of Mch from Archaeoglobus fulgidus (aMch) and determined the X-ray structures of the substrate-free aMch(E186Q), the aMch:H(4)MPT complex, and the aMch(E186Q):formyl-H(4)MPT complex. (Formyl-)H(4)MPT is embedded inside a largely preformed, interdomain pocket of the homotrimeric enzyme with the pterin and benzyl rings being oriented nearly perpendicular to each other.
View Article and Find Full Text PDFSome N(2)-fixing bacteria prolong the functionality of nitrogenase in molybdenum starvation by a special Mo storage protein (MoSto) that can store more than 100 Mo atoms. The presented 1.6 Å X-ray structure of MoSto from Azotobacter vinelandii reveals various discrete polyoxomolybdate clusters, three covalently and three noncovalently bound Mo(8), three Mo(5-7), and one Mo(3) clusters, and several low occupied, so far undefinable clusters, which are embedded in specific pockets inside a locked cage-shaped (αβ)(3) protein complex.
View Article and Find Full Text PDFThe anaerobic oxidation of methane (AOM) with sulphate, an area currently generating great interest in microbiology, is accomplished by consortia of methanotrophic archaea (ANME) and sulphate-reducing bacteria. The enzyme activating methane in methanotrophic archaea has tentatively been identified as a homologue of methyl-coenzyme M reductase (MCR) that catalyses the methane-forming step in methanogenic archaea. Here we report an X-ray structure of the 280 kDa heterohexameric ANME-1 MCR complex.
View Article and Find Full Text PDFThe coenzyme A (CoA)-dependent aerobic benzoate metabolic pathway uses an unprecedented chemical strategy to overcome the high aromatic resonance energy by forming the non-aromatic 2,3-epoxybenzoyl-CoA. The crucial dearomatizing reaction is catalyzed by three enzymes, BoxABC, where BoxA is an NADPH-dependent reductase, BoxB is a benzoyl-CoA 2,3-epoxidase, and BoxC is an epoxide ring hydrolase. We characterized the key enzyme BoxB from Azoarcus evansii by structural and Mössbauer spectroscopic methods as a new member of class I diiron enzymes.
View Article and Find Full Text PDFFlavohemoglobins (flavoHbs) are enzymes that operate primarily as nitric oxide dioxygenases and shuttle thereby electrons among NAD(P)H, FAD, heme, and a ligated redox-active substrate such as O(2). They function in the bacterial defense against nitrosative stress and are therefore considered as targets for new antibiotic drugs. Recently, azole derivatives were proven to be attractive nitric oxide dioxygenase inhibitors, and to explore their binding characteristics, we determined the X-ray structure of the flavoHb from Ralstonia eutropha in a complex with miconazole (FHP(M)), econazole (FHP(E)), and ketoconazole (FHP(K)).
View Article and Find Full Text PDF