The degradation of many structurally diverse aromatic compounds in Acinetobacter baylyi is accomplished by the beta-ketoadipate pathway. In addition to specific induction of expression by certain aromatic compounds, this pathway is regulated by complex mechanisms at multiple levels, which are the topic of this study. Multiple operons feeding into the beta-ketoadipate pathway are controlled by carbon catabolite repression (CCR) caused by succinate plus acetate.
View Article and Find Full Text PDFMicrobiology (Reading)
October 2008
Carbon catabolite repression is an important mechanism allowing efficient carbon source utilization. In the soil bacterium Acinetobacter baylyi, this mechanism has been shown to apply to the aromatic degradative pathways for the substrates protocatechuate, p-hydroxybenzoate and vanillate. In this investigation, transcriptional fusions with the gene for luciferase in the gene clusters for the degradation of benzyl esters, anthranilate, benzoate, hydroxycinnamates and dicarboxylates (are, ant, ben, hca and dca genes) were constructed and established in the chromosome of A.
View Article and Find Full Text PDF