Importance: The causal direction and magnitude of the association between telomere length and incidence of cancer and non-neoplastic diseases is uncertain owing to the susceptibility of observational studies to confounding and reverse causation.
Objective: To conduct a Mendelian randomization study, using germline genetic variants as instrumental variables, to appraise the causal relevance of telomere length for risk of cancer and non-neoplastic diseases.
Data Sources: Genomewide association studies (GWAS) published up to January 15, 2015.
Previous studies have suggested that leukocyte telomere length is associated with risk of developing prostate cancer. Investigations of leukocyte telomere length as a prognostic factor in prostate cancer are, however, lacking. In this study, leukocyte telomere length was investigated both as a risk marker, comparing control subjects and patient risk groups (based on serum levels of prostate-specific antigen, tumor differentiation, and tumor stage), and as a prognostic marker for metastasis-free and cancer-specific survival.
View Article and Find Full Text PDFTelomeres are protective structures at the end of chromosomes, essential for chromosomal integrity. A large number of studies have investigated leukocyte telomere length as a possible risk marker for various cancers, colorectal cancer (CRC) included. In contrast, studies investigating leukocyte telomere length in relation to CRC survival are lacking.
View Article and Find Full Text PDFBackground: Telomere length is a putative biomarker of ageing, morbidity and mortality. Its application is hampered by lack of widely applicable reference ranges and uncertainty regarding the present limits of measurement reproducibility within and between laboratories.
Methods: We instigated an international collaborative study of telomere length assessment: 10 different laboratories, employing 3 different techniques [Southern blotting, single telomere length analysis (STELA) and real-time quantitative PCR (qPCR)] performed two rounds of fully blinded measurements on 10 human DNA samples per round to enable unbiased assessment of intra- and inter-batch variation between laboratories and techniques.
Background: Telomere length has been associated with a healthy lifestyle and longevity. However, the effect of increased physical activity on telomere length is still unknown. Therefore, the aim was to study the relationship between changes in physical activity level and sedentary behaviour and changes in telomere length.
View Article and Find Full Text PDFAppl Immunohistochem Mol Morphol
February 2016
Detailed genetic profiling of clear cell renal cell carcinoma (ccRCC) has revealed genomic regions commonly affected by structural changes and a general genetic heterogeneity. VHL and PBRM1, both located at chromosome 3p, are 2 major genes mutated at high frequency but apart from these aberrations, the mutational landscape in ccRCC is largely undefined. Potential prognostic information given by the genomic changes appears to depend on the particular cohort studied.
View Article and Find Full Text PDFMost previous studies on telomere length (TL) in chronic lymphocytic leukemia (CLL) are based on referral cohorts including a high proportion of aggressive cases. Here, the impact of TL was analyzed in a population-based cohort of newly diagnosed CLL (n = 265) and in relation to other prognostic markers. Short telomeres were particularly associated with high-risk genetic markers, such as NOTCH1, SF3B1, or TP53 aberrations, and predicted a short time to treatment (TTT) and overall survival (OS) (both P < 0.
View Article and Find Full Text PDFOver the last decade, telomere length (TL) has gained attention as a potential biomarker in cancer disease. We previously reported that long blood TL was associated with a poorer outcome in patients with breast cancer and renal cell carcinoma. Based on these findings, we hypothesized that certain immunological components may have an impact on TL dynamics in cancer patients.
View Article and Find Full Text PDFThere is a considerable heterogeneity in blood cell telomere length (TL) for individuals of similar age and recent studies have revealed that TL changes by time are dependent on TL at baseline. TL is partly inherited, but results from several studies indicate that e.g.
View Article and Find Full Text PDFBackground: Telomeres play a key role in the maintenance of chromosome integrity and stability, and telomere shortening is involved in initiation and progression of malignancies. A series of epidemiological studies have examined the association between shortened telomeres and risk of cancers, but the findings remain conflicting.
Methods: A dataset composed of 11,255 cases and 13,101 controls from 21 publications was included in a meta-analysis to evaluate the association between overall cancer risk or cancer-specific risk and the relative telomere length.
Telomere length is documented to have a hereditary component, and both paternal and X-linked inheritance have been proposed. We investigated blood cell telomere length in 962 individuals with an age range between 0 and 102 years. Telomere length correlations were analyzed between parent-child pairs in different age groups and between grandparent-grandchild pairs.
View Article and Find Full Text PDFTelomeres are essential structures for maintaining chromosomal stability and their length has been reported to correlate with cancer risk and clinical outcome. Single nucleotide polymorphisms (SNPs) in genes encoding telomere-associated proteins could affect telomere length and chromosomal stability by influencing gene expression or protein configuration in the telomeres. Here, we report the results of the first association study on genetic variation in telomere-associated genes and their effect on telomere length, breast cancer (BC) susceptibility and prognosis.
View Article and Find Full Text PDFTelomere maintenance is important for tumor cell growth and survival. Telomere length (TL) is determined by the balance between positive and negative factors impacting telomere homeostasis. In the last decade, TL has emerged as a promising clinical marker for risk and prognosis prediction in patients with malignant disorders.
View Article and Find Full Text PDFTelomeres are repetitive structures located at chromosome ends. Previous studies have indicated that blood cell telomeres may serve as a biomarker for cancer risk. In addition, we recently reported that blood telomere length predicted survival in patients with breast cancer.
View Article and Find Full Text PDFAge-associated telomere shortening is a well documented feature of peripheral blood cells in human population studies, but it is not known to what extent these data can be transferred to the individual level. Telomere length (TL) in two blood samples taken at approximately 10 years interval from 959 individuals was investigated using real-time PCR. TL was also measured in 13 families from a multigenerational cohort.
View Article and Find Full Text PDFTelomeres are essential for maintaining chromosomal stability. Previous studies have indicated that individuals with shorter blood telomeres may be at higher risk of developing various types of cancer, such as in lung, bladder, and kidney. We have analyzed relative telomere length (RTL) of peripheral blood cells in relation to breast cancer incidence and prognosis.
View Article and Find Full Text PDF