Publications by authors named "Ulrika Felldin"

Aortic valve degeneration (AVD) is a life-threatening condition that has no medical treatment and lacks individual therapies. Although extensively studied with standard approaches, aetiologies behind AVD are unclear. We compared abundances of extracellular matrix (ECM) proteins from excised valve tissues of 88 patients with isolated AVD of normal tricuspid (TAV) and congenital bicuspid aortic valves (BAV), quantified more than 1400 proteins per ECM sample by mass spectrometry, and demonstrated that local ECM preserves molecular cues of the pathophysiological processes.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) play a key role in many physiological and pathophysiological processes and hold great potential for therapeutic and diagnostic use. Despite significant advances within the last decade, the key issue of EV storage stability remains unresolved and under investigated. Here, we aimed to identify storage conditions stabilizing EVs and comprehensively compared the impact of various storage buffer formulations at different temperatures on EVs derived from different cellular sources for up to 2 years.

View Article and Find Full Text PDF

Objective: Cell metabolism has been shown to play an active role in regulation of stemness and fate decision. In order to identify favorable culture conditions for mesenchymal stromal cells (MSCs) prior to transplantation, this study aimed to characterize the metabolic function of MSCs from different developmental stages in response to different oxygen tension during expansion.

Materials And Methods: We cultured human fetal cardiac MSCs and human adult bone-marrow MSCs for a week under hypoxia (3% O) and normoxia (20% O).

View Article and Find Full Text PDF

Extracellular matrix (ECM) components govern a range of cell functions, such as migration, proliferation, maintenance of stemness, and differentiation. Cell niches that harbor stem-/progenitor cells, with matching ECM, have been shown in a range of organs, although their presence in the heart is still under debate. Determining niches depends on a range of in vitro and in vivo models and techniques, where animal models are powerful tools for studying cell-ECM dynamics; however, they are costly and time-consuming to use.

View Article and Find Full Text PDF

Mesenchymal stromal cells (MSCs) have shown great potential as a treatment for systemic inflammatory diseases, but their local regenerative properties are highly tissue- and site specific. Previous studies have demonstrated that adult human MSCs respond to inflammatory cytokines through the release of paracrine factors that stimulate angiogenesis, but they do not themselves differentiate into vascular structures in vivo. In this study, we used human fetal cardiac MSCs (hfcMSCs) harvested during the first trimester of heart development and injected them into the subcutaneous tissue of normal immunocompetent mice treated with short-term costimulation blockade for tolerance induction.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) can be harvested from cell culture supernatants and from all body fluids. EVs can be conceptually classified based on their size and biogenesis as exosomes and microvesicles. Nowadays, it is however commonly accepted in the field that there is a much higher degree of heterogeneity within these two subgroups than previously thought.

View Article and Find Full Text PDF

Heart failure is a major health problem linked to poor quality of life and high mortality rates. Hence, novel biomarkers, such as fetal marker genes with low expression levels, could potentially differentiate disease states in order to improve therapy. In many studies on heart failure, cardiac biopsies have been analyzed as uniform pieces of tissue with bulk techniques, but this homogenization approach can mask medically relevant phenotypes occurring only in isolated parts of the tissue.

View Article and Find Full Text PDF

The intrinsic regenerative capacity of human fetal cardiac mesenchymal stromal cells (MSCs) has not been fully characterized. Here we demonstrate that we can expand cells with characteristics of cardiovascular progenitor cells from the MSC population of human fetal hearts. Cells cultured on cardiac muscle laminin (LN)-based substrata in combination with stimulation of the canonical Wnt/β-catenin pathway showed increased gene expression of ISL1, OCT4, KDR, and NKX2.

View Article and Find Full Text PDF

Coronary arteriogenesis is a central step in cardiogenesis, requiring coordinated generation and integration of endothelial cell and vascular smooth muscle cells. At present, it is unclear whether the cell fate programme of cardiac progenitors to generate complex muscular or vascular structures is entirely cell autonomous. Here we demonstrate the intrinsic ability of vascular progenitors to develop and self-organize into cardiac tissues by clonally isolating and expanding second heart field cardiovascular progenitors using WNT3A and endothelin-1 (EDN1) human recombinant proteins.

View Article and Find Full Text PDF

After the first derivations of human embryonic stem cell (hESC) lines on fetal mouse feeder cell layers, the idea of using human cells instead of mouse cells as feeder cells soon arose. Mouse cells bear a risk of microbial contamination, and nonhuman immunogenic proteins are absorbed from the feeders to hESCs. Human skin fibroblasts can be effectively used as feeder cells for hESCs.

View Article and Find Full Text PDF

Transplantation of human embryonic stem cells (hESCs), like other allogeneic cellular transplants, require immunomodulation or immunosuppression in order to be maintained in the recipient. Costimulation blockade applied at the time of transplantation inhibits costimulatory signals in the immunological synapse leading to a state of anergy in the donor reactive T-cell population and a state of immunological tolerance in the host. In models of solid organ transplantation, tolerance is maintained by the infiltration of Foxp3(+) regulatory T cells into the graft.

View Article and Find Full Text PDF

After the first derivations of human embryonic stem cell (hESC) lines on fetal mouse feeder cell layers, the idea of using human cells instead of mouse cells as feeder cells soon arouse. Mouse cells bear a risk of microbial contamination, and nonhuman immunogenic proteins are absorbed from the feeders to hESCs. Human skin fibroblasts can be effectively used as feeder cells for hESCs.

View Article and Find Full Text PDF

The variation of HoxB4 expression levels might be a key regulatory mechanism in the differentiation of human embryonic stem cell (hESC)-derived hematopoietic stem cells (HSCs). In this study, hESCs ectopically expressing high and low levels of HoxB4 were obtained using lentiviral gene transfer. Quantification throughout differentiation revealed a steady increase in transcription levels from our constructs.

View Article and Find Full Text PDF