Commercially pure titanium (cp-Ti) is regarded as the state-of-the-art material for bone-anchored dental devices, whereas the mechanically stronger alloy (Ti-6Al-4V), made of titanium, aluminum (Al) and vanadium (V), is regarded as the material of choice for high-load applications. There is a call for the development of new alloys, not only to eliminate the potential toxic effect of Al and V but also to meet the challenges imposed on dental and maxillofacial reconstructive devices, for example. The present work evaluates a novel, dual-stage, acid-etched, Ti-Ta-Nb-Zr alloy implant, consisting of elements that create low toxicity, with the potential to promote osseointegration in vivo.
View Article and Find Full Text PDFJ Mater Sci Mater Med
September 2013
This paper evaluates the loading and release properties of Tobramycin incorporated by adsorptive loading from a solution into plasma sprayed and biomimetically coated Hydroxyapatite (HA) fixation pins. The aim of this study is to contribute towards designing a functional implant surface offering local release of the antibiotic agent to prevent post-surgical infections. Cathodic arc deposition is used to coat stainless steel fixation pins with a bioactive, anatase phase dominated, TiO₂ coating onto which a HA layer is grown biomimetically.
View Article and Find Full Text PDFWe have incorporated bisphosphonates and antibiotics simultaneously into a biomimetic hydroxyapatite implant coating aiming to use the interaction between drug-molecules and hydroxyapatite to enable local release of the two different substances to obtain a dual biological effect. A sustained release over for 43 h of antibiotics (cephalothin) was achieved without negative interference from the presence of the bisphosphonate (clodronate) which, in turn, successfully bonded to the coating surface. To our knowledge, this is the first study that indicates the possibility to simultaneously incorporate both antibiotics and bisphosphonates to an implant coating, a strategy that is believed to improve implant stability and reduce implant-related infections.
View Article and Find Full Text PDFWiley Interdiscip Rev Nanomed Nanobiotechnol
March 2010
We present here a study of the controlled release of amino acid-derived amphiphilic molecules from the internal pore structure of mesoporous nanoparticle drug delivery systems with different structural properties, namely cubic and hexagonal structures of various degrees of complexity. The internal pore surface of the nanomaterials presented has been functionalised with amine moieties through a one-pot method. Release profiles obtained by conductivity measurements are interpreted in terms of specific structural and textural parameters of the porous nanoparticles, such as pore geometry and connectivity.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
November 2009
Poor implant fixation and bone resorption are two of the major challenges in modern orthopedics and are caused by poor bone/implant integration. In this work, bioactive crystalline titanium dioxide (TiO(2))/hydroxyapatite (HA) surfaces, functionalized with bone morphogenetic protein 2 (BMP-2), were evaluated as potential implant coatings for improved osseointegration. The outer layer consisted of HA, which is known to be osteoconductive, and may promote improved initial bone attachment when functionalized with active molecules such as BMP-2 in a soaking process.
View Article and Find Full Text PDFThe objectives of the present work was to evaluate the possibility for fast loading by soaking of bisphosphonates (BPs) into hydroxylapatite (HA) implant coatings biomimetically grown on crystalline TiO(2) surfaces, and also investigate the influence of different BP loading concentrations in a buffer during co-precipitation of a calcium phosphate containing layer onto these surfaces. The co-precipitation method created coatings that contained BPs throughout most of the coating layer, but the presence of BPs in the buffer hindered the formation of a bulk HA-layer, thus resulting in very thin coatings most likely consisting of islands built up by a calcium phosphate containing BPs. The coatings biomimetically grown on TiO(2) surfaces, were shown to consist of crystalline HA.
View Article and Find Full Text PDFThe possibility to fast-load biomimetic hydroxyapatite coatings on surgical implant with the antibiotics Amoxicillin, Gentamicin sulfate, Tobramycin and Cephalothin has been investigated in order to develop a multifunctional implant device offering sustained local anti-bacterial treatment and giving the surgeon the possibility to choose which antibiotics to incorporate in the implant at the site of surgery. Physical vapor deposition was used to coat titanium surfaces with an adhesion enhancing gradient layer of titanium oxide having an amorphous oxygen poor composition at the interface and a crystalline bioactive anatase TiO(2) composition at the surface. Hydroxyapatite (HA) was biomimetically grown on the bioactive TiO(2) to serve as a combined bone in-growth promoter and drug delivery vehicle.
View Article and Find Full Text PDFA new method to investigate the effect of pore geometry on diffusion processes in mesoporous silica nanoparticles and other types of micro- and mesoporous structures is put forward. The method is based on the study of proton diffusion from a liquid surrounding the mesoporous particles into the particle pore system. The proton diffusion properties are assessed for a variety of as-synthesized mesoporous nano- and microparticles with two-dimensional and three-dimensional connectivity.
View Article and Find Full Text PDFWe present here a detailed study of the controlled release of amino acid derived amphiphilic molecules from the internal pore structure of mesoporous nanoparticle drug delivery systems with different structural properties; namely cubic and hexagonal structures of various degrees of complexity. The internal pore surface of the nanomaterials presented has been functionalised with amine moieties through a one pot method. Release profiles obtained by Alternating Ionic Current measurements are interpreted in terms of specific structural and textural parameters of the porous nanoparticles such as pore geometry and connectivity.
View Article and Find Full Text PDFThe purpose of this work is to study the kinetics of self-assembly in the formation mechanism of anionic templated mesoporous solids (AMS-n) during the first few seconds of the synthesis as well as to demonstrate the use of alternating ion current (AIC) conductivity measurements to follow the self-assembly in complex hybrid systems. The formation of different AMS-n caged-type mesostructures through the delayed addition of the silica source is demonstrated and explained in terms of the interaction between the co-structure-directing agent (CSDA) and the oppositely charged surfactant headgroup regions. Our findings, supported by transmission electron microscopy, 29Si magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy, dynamic light scattering (DLS) measurements, and powder X-ray diffraction suggest that the interaction of the CSDA with the surfactant headgroup occurs within seconds after its addition to the synthesis gel leading to interaction between the polymerizing CSDAs and the oppositely charged micelle and to an increase in the micelle-CSDA aggregate size.
View Article and Find Full Text PDFDrug release from matrix systems of cylindrical shape is analyzed in detail by using the finite element method. The model used combines the Noyes-Whitney and diffusion equations, and thus takes the effects of a finite dissolution rate into account. The model is valid for all drug solubilities and dissolution rates, and allows accurate predictions of the drug release to be made.
View Article and Find Full Text PDFTemperature-dependent drug release from disintegrating tablets made of NaCl-containing agglomerated micronized cellulose (AMC) granules has been studied to characterize the release process. Release measurements on tablets compacted at three different compaction pressures; 50, 100, and 200 MPa, were performed at seven different temperatures; 6, 23, 33, 43, 50, 55, and 63 degrees C using the recently developed alternating ionic current method. Tablets compacted at different compaction pressures showed similar release rates.
View Article and Find Full Text PDF