We report the development of a new database of technology services and products for analysis of biobank samples in biomedical research. BARCdb, the Biobanking Analysis Resource Catalogue, is a freely available web resource, listing expertise and molecular resource capabilities of research centres and biotechnology companies. The database is designed for researchers who require information on how to make best use of valuable biospecimens from biobanks and other sample collections, focusing on the choice of analytical techniques and the demands they make on the type of samples, pre-analytical sample preparation and amounts needed.
View Article and Find Full Text PDFBackground: The transcription factor SOX11 is of diagnostic and prognostic importance in mantle cell lymphoma (MCL) and epithelial ovarian cancer (EOC), respectively. Thus, there is an unmet clinical and experimental need for SOX11-targeting assays with low background, high specificity and robust performance in multiple applications, including immunohistochemistry (IHC-P) and flow cytometry, which until now has been lacking.
Methods: We have developed SOX11-C1, a monoclonal mouse antibody targeting SOX11, and successfully evaluated its performance in western blots (WB), IHC-P, fluorescence microscopy and flow cytometry.
The transcription factor SOX11 is a novel diagnostic marker for mantle cell lymphoma (MCL), distinguishing this aggressive tumor from potential simulators. Recent data also show that the level of SOX11 correlates to in vitro growth properties in MCL, as well as the clinical progression. We have previously shown that MCL-associated pathways, such as Rb-E2F, are dysregulated leading to decreased proliferation upon overexpression of SOX11, emphasizing the impact of SOX11 on MCL-specific gene expression and growth control.
View Article and Find Full Text PDFTranscription factors (TFs) are critical for B-cell differentiation, affecting gene expression both by repression and transcriptional activation. Still, this information is not used for classification of B-cell lymphomas (BCLs). Traditionally, BCLs are diagnosed based on a phenotypic resemblance to normal B-cells; assessed by immunohistochemistry or flow cytometry, by using a handful of phenotypic markers.
View Article and Find Full Text PDFFollicular lymphoma (FL) frequently transforms into the more aggressive diffuse large B cell lymphoma (DLBCL-tr), but no protein biomarkers have been identified for predictive or early diagnosis. Gene expression analyses have identified genes changing on transformation but have failed to be reproducible in different studies, reflecting the heterogeneity within the tumor tissue and between tumor samples. Gene expression analyses on Affymetrix Human Genome U133 Plus 2.
View Article and Find Full Text PDFTo study the differential expression of cell membrane-bound receptors and their potential role in growth and/or survival of the tumor cells, highly purified follicular lymphoma cells were analyzed, using gene expression analysis, and compared to non-malignant B cell populations. Filtering the genome for overexpressed genes coding for cell membrane-bound proteins/receptors resulted in a hit list of 27 identified genes. Among these, we have focused on the aberrant over expression of CX3CR1, in different types of B cell lymphoma, as compared to non-malignant B cells.
View Article and Find Full Text PDFUpon encounter with antigen, the B lymphocyte population responds by producing a diverse set of antigen-specific antibodies of various isotypes. The vast size of the responding populations makes it very difficult to study clonal evolution and repertoire composition occurring during these processes in humans. Here, we have explored an approach utilizing the H-EPSILON-encoding transcriptome to investigate aspects of repertoire diversity during the season of antigen exposure.
View Article and Find Full Text PDFMantle cell lymphoma (MCL) is an aggressive lymphoid malignancy for which better treatment strategies are needed. To identify potential diagnostic and therapeutic targets, a signature consisting of MCL-associated genes was selected based on a comprehensive gene expression analysis of malignant and normal B cells. The corresponding protein epitope signature tags were identified and used to raise monospecific, polyclonal antibodies, which were subsequently analyzed on paraffin-embedded sections of malignant and normal tissue.
View Article and Find Full Text PDF