Publications by authors named "Ulrik Sundekilde"

Propionate is an important short-chain carboxylic acid (SCCA) that serves as an effective antimicrobial agent for food preservation. Previous research has highlighted that few can synthesize propionate by metabolizing deoxyhexoses via the fermentation intermediate 1,2-propanediol (1,2-PD). In this study, we investigated propionate production by subsp.

View Article and Find Full Text PDF

This study explores the feasibility of utilizing in vitro cultivated milk-derived bovine mammary epithelial cells (bMECs) for the production of milk constituents. BMECs were isolated from milk and treated with various lactogenic agents in 3D transwell systems. By proteomics, >900 proteins were identified and quantified in the secretomes, including >100 milk-related proteins such as caseins and enzymes.

View Article and Find Full Text PDF
Article Synopsis
  • Human milk oligosaccharides (HMOs) are undigestible carbohydrates in human milk that support infant health and may be influenced by maternal obesity through the gut microbiota.
  • This study analyzed 90 milk samples from mothers with varying body mass indices (BMIs) to explore the relationship between maternal obesity and HMO profiles, finding no significant connections.
  • The results suggest that maternal weight prior to pregnancy does not affect HMO abundance, underlining the importance of sharing findings even when statistical correlations are absent.
View Article and Find Full Text PDF

This study explores the disulfide bridges present in the human milk proteome by a novel approach permitting both positional identification and relative quantification of the disulfide bridges. Human milk from six donors was subjected to trypsin digestion without reduction. The digested human milk proteins were analyzed by nanoLC-timsTOF Pro combined with data analysis using xiSEARCH.

View Article and Find Full Text PDF

As glycosylations are difficult to analyze, their roles and effects are poorly understood. Glycosylations in human milk (HM) differ across lactation. Glycosylations can be involved in antimicrobial activities and may serve as food for beneficial microorganisms.

View Article and Find Full Text PDF

The infant urine metabolome provides a body metabolic snapshot, and the sample collection can be done without stressing the fragile infant. 424 infant urine samples from 157 infants were sampled longitudinally at 1-, 2-, and 3 months of age. 49 metabolites were detected using proton nuclear magnetic resonance spectroscopy.

View Article and Find Full Text PDF

Biopreservation refers to the use of natural or controlled microbial single strains or consortia, and/or their metabolites such as short-chain carboxylic acids (SCCA), to improve the shelf-life of foods. This study aimed at establishing a novel Lactobacillaceae-driven bioprocess that led to the production of the SCCA propionate through the cross-feeding on 1,2-propanediol (1,2-PD) derived from the deoxyhexoses rhamnose or fucose. When grown as single cultures in Hungate tubes, strains of Lacticaseibacillus rhamnosus preferred fucose over rhamnose and produced 1,2-PD in addition to lactate, acetate, and formate, while Limosilactobacillus reuteri metabolized 1,2-PD into propionate, propanol and propanal.

View Article and Find Full Text PDF

The presence of proteases and their resulting level of activity on human milk (HM) proteins may aid in the generation of indigenous peptides as part of a pre-digestion process, of which some have potential bioactivity for the infant. The present study investigated the relative abundance of indigenous peptides and their cleavage products in relation to the abundance of observed proteases and protease inhibitors. The proteomes and peptidomes in twelve HM samples, representing six donors at lactation months 1 and 3, were profiled.

View Article and Find Full Text PDF

Previous studies indicated an intrinsic relationship between infant diet, intestinal microbiota composition and fermentation activity with a strong focus on the role of breastfeeding on microbiota composition. Yet, microbially formed short-chain fatty acids acetate, propionate and butyrate and other fermentation metabolites such as lactate not only act as substrate for bacterial cross-feeding and as mediators in microbe-host interactions but also confer antimicrobial activity, which has received considerably less attention in the past research. It was the aim of this study to investigate the nutritional-microbial interactions that contribute to the development of infant gut microbiota with a focus on human milk oligosaccharide (HMO) fermentation.

View Article and Find Full Text PDF

Introduction: Human milk provides all macronutrients for growth, bioactive compounds, micro-organisms and immunological components, which potentially interacts with and primes infant growth and, development, immune responses and the gut microbiota of the new-born. Infants with an overweight mother are more likely to become overweight later in life and overweight has been related to the gut microbiome. Therefore, it is important to investigate the mother-milk-infant triad as a biological system and if the maternal weight status influences the human milk composition, infant metabolism and gut microbiome.

View Article and Find Full Text PDF

Human milk (HM) provides essential nutrition for ensuring optimal infant growth and development postpartum. Metabolomics offers insight into the dynamic composition of HM. Studies have reported the impact of lactation stage, maternal genotype, and gestational age on HM metabolome.

View Article and Find Full Text PDF

infection (CDI) is a life-threatening disease caused by the Gram-positive, opportunistic intestinal pathogen . Despite the availability of antimicrobial drugs to treat CDI, such as vancomycin, metronidazole, and fidaxomicin, recurrence of infection remains a significant clinical challenge. The use of live commensal microorganisms, or probiotics, is one of the most investigated non-antibiotic therapeutic options to balance gastrointestinal (GI) microbiota and subsequently tackle dysbiosis.

View Article and Find Full Text PDF

The circadian rhythm has profound effect on the body, exerting effects on diverse events like sleep-wake patterns, eating behavior and hepatic detoxification. The cytochrome p450 s (Cyps) is the main group of enzymes responsible for detoxification. However, the underlying mechanisms behind circadian regulation of the Cyps are currently not fully clarified.

View Article and Find Full Text PDF

Little is known about the extent of variation and activity of naturally occurring milk glycosidases and their potential to degrade milk glycans. A multi-omics approach was used to investigate the relationship between glycosidases and important bioactive compounds such as free oligosaccharides and -linked glycans in bovine milk. Using 4-methylumbelliferone (4-MU) assays activities of eight indigenous glycosidases were determined, and by mass spectrometry and H NMR spectroscopy various substrates and metabolite products were quantified in a subset of milk samples from eight native North European cattle breeds.

View Article and Find Full Text PDF
Article Synopsis
  • Thermal processes are essential in metabolomics and small molecule analysis, particularly using gas chromatography mass spectrometry (GC/MS) for tasks like derivatization and ionization.
  • An optimized derivatization protocol with multiple isotope labelled internal standards was successful in analyzing various metabolites from pooled urine samples, while also showcasing the impact of GC methods on metabolite thermal stability and MS signal suppression.
  • Utilizing an extended temperature ramp in GC led to improved metabolite stability and chromatographic separation, emphasizing the importance of proper sampling and heating regulation in GC metabolomics, along with the recommendation for multiple internal standards.
View Article and Find Full Text PDF

Bovine milk oligosaccharides (BMO) share structural similarity to selected human milk oligosaccharides, which are natural prebiotics for infants. Thus, there is a potential in including BMOs as a prebiotic in infant formula. To examine the in vivo effect of BMO-supplementation on the infant gut microbiota, a BMO-rich diet (2% /) was fed to gnotobiotic mice ( = 11) inoculated with an infant type co-culture and compared with gnotobiotic mice receiving a control diet ( = 9).

View Article and Find Full Text PDF

Purpose Of Review: Human milk is the gold standard of infant nutrition. The milk changes throughout lactation and is tailored for the infant providing the nutrients, minerals and vitamins necessary for supporting healthy infant growth. Human milk also contains low molecular weight compounds (metabolites) possibly eliciting important bioactivity.

View Article and Find Full Text PDF

Recently, we demonstrated negative effects of vitamin D supplementation on muscle strength and physical performance in women with vitamin D insufficiency. The underlying mechanism behind these findings remains unknown. In a secondary analysis of the randomized placebo-controlled trial designed to investigate cardiovascular and musculoskeletal health, we employed NMR-based metabolomics to assess the effect of a daily supplement of vitamin D3 (70 µg) or an identically administered placebo, during wintertime.

View Article and Find Full Text PDF

Oligosaccharides from human or bovine milk selectively stimulate growth or metabolism of bacteria associated with the lower gastrointestinal tract of infants. Results from complex infant-type co-cultures point toward a possible synergistic effect of combining bovine milk oligosaccharides (BMO) and lactose (LAC) on enhancing the metabolism of subsp. and inhibition of We examine the interaction between subsp.

View Article and Find Full Text PDF

Commercial formula milk (FM) constitutes the best alternative to fulfill the nutritional requirements of infants when breastfeeding is precluded. Here, we present the comparative study of polar metabolite composition of human breast milk (HBM) and seven different brands of FM by nuclear magnetic resonance spectroscopy. The results of the multivariate data analysis exposed qualitative and quantitative differences between HBM and FM composition as well as within FM of various brands and in HBM itself (between individual mothers and lactation period).

View Article and Find Full Text PDF

Subclinical metabolic disorders such as ketosis cause substantial economic losses for dairy farmers in addition to the serious welfare issues they pose for dairy cows. Major hurdles in genetic improvement against metabolic disorders such as ketosis include difficulties in large-scale phenotype recording and low heritability of traits. Milk concentrations of ketone bodies, such as acetone and β-hydroxybutyric acid (BHB), might be useful indicators to select cows for low susceptibility to ketosis.

View Article and Find Full Text PDF

Obesity is a multifactorial disease with many complications and related diseases and has become a global epidemic. To thoroughly understand the impact of obesity on whole organism homeostasis, it is helpful to utilize a systems biological approach combining gene expression and metabolomics across tissues and biofluids together with metagenomics of gut microbial diversity. Here, we present a multi-omics study on liver, muscle, adipose tissue, urine, plasma, and feces on mice fed a high-fat diet (HFD).

View Article and Find Full Text PDF

Red meat has been associated with an increased cardiovascular disease (CVD) risk, possibly through gut microbial-derived trimethylamine-N-oxide (TMAO). However, previous reports are conflicting, and influences from the background diet may modulate the impact of meat consumption. This study investigated the effect of red and white meat intake combined with two different background diets on urinary TMAO concentration and its association with the colon microbiome in addition to apparent hepatic TMAO-related activity.

View Article and Find Full Text PDF

NMR spectroscopy is one of the major analytical techniques used in the metabolomics studies of food. There are many applications of metabolomics on food-related topics and on the food itself. Here, we describe protocols for performing NMR-based metabolomics of foods ranging from simple beverages to solid foods and semisolid foods.

View Article and Find Full Text PDF

Intake of red and processed meat has been suspected to increase colorectal cancer risk potentially via endogenous formation of carcinogenic N-nitroso compounds or increased lipid and protein oxidation. Here we investigated the effect of inulin fortification of a pork sausage on these parameters. For four weeks, healthy Sprague-Dawley rats (n = 30) were fed one of three diets: inulin-fortified pork sausage, control pork sausage or a standard chow diet.

View Article and Find Full Text PDF