Cleistogenes songorica (2n = 4x = 40) is a desert grass with a unique dimorphic flowering mechanism and an ability to survive extreme drought. Little is known about the genetics underlying drought tolerance and its reproductive adaptability. Here, we sequenced and assembled a high-quality chromosome-level C.
View Article and Find Full Text PDFThe class I aldolase dihydrodipicolinate synthase (DHDPS) catalyzes the first committed step of the diaminopimelate (DAP) lysine biosynthesis pathway in bacteria, archaea and plants. Despite the existence, in databases, of numerous fungal sequences annotated as DHDPS, its presence in fungi has been the subject of contradictory claims. We report the characterization of DHDPS candidates from fungi.
View Article and Find Full Text PDFThe cryophilic Antarctic hair grass, Deschampsia antarctica E. Desv., one of two higher plants indigenous to Antarctica, represents a unique resource for the study of freeze tolerance mechanisms.
View Article and Find Full Text PDFCleistogenes songorica is an important perennial grass found in the pastoral steppe of Inner Mongolia. C. songorica flourishes in drought prone environments, and therefore provides an ideal candidate plant system for the identification of drought-tolerance conferring genes.
View Article and Find Full Text PDFAntarctic hair grass (Deschampsia antarctica E. Desv.), the only grass indigenous to Antarctica, has well-developed freezing tolerance, strongly induced by cold acclimation.
View Article and Find Full Text PDFTo date, the overwhelming majority of genomics programs in plants have been directed at model or crop plant species, meaning that very little of the naturally occurring sequence diversity found in plants is available for characterization and exploitation. In contrast, 'xenogenomics' refers to the discovery and functional analysis of novel genes and alleles from indigenous and exotic species, permitting bioprospecting of biodiversity using high-throughput genomics experimental approaches. Such a program has been initiated to bioprospect for genetic determinants of abiotic stress tolerance in indigenous Australian flora and native Antarctic plants.
View Article and Find Full Text PDFIn the fission yeast Schizosaccharomyces pombe, the protein kinase Chk1 has an essential role in transducing a delay signal to the cell cycle machinery in the presence of DNA damage. Fission yeast cells lacking the chk1 gene do not delay progression of the cell cycle in response to damage and are thus sensitive to DNA damaging agents. We have previously shown that Chk1 is phosphorylated following DNA damage induced by a variety of agents and that this is dependent on the integrity of the DNA damage checkpoint pathway, including Rad3, the ATR homolog.
View Article and Find Full Text PDFNIMA kinases appear to be the least functionally conserved mitotic regulators, being implicated in chromosome condensation in fungi and in spindle function in metazoans. We demonstrate here that the fission yeast NIMA homologue, Fin1p, can induce profound chromosome condensation in the absence of the condensin and topoisomerase II, indicating that Fin1p-induced condensation differs from mitotic condensation. Fin1p expression is transcriptionally and post-translationally cell cycle-regulated, with Fin1p kinase activity maximal from the metaphase-anaphase transition to G(1).
View Article and Find Full Text PDF