Publications by authors named "Ulrich Vogt"

Ptychography has evolved as an important method for nanoscale X-ray imaging with synchrotron radiation. Recently, it has been proposed to work with multiple beams in parallel. The main advantage of so-called multi-beam ptychography is that larger areas can be imaged much faster than with a conventional single beam scan.

View Article and Find Full Text PDF

Recent advances in sensor technology for air pollution monitoring open new possibilities in the field of environmental epidemiology. The low spatial resolution of fixed outdoor measurement stations and modelling uncertainties currently limit the understanding of personal exposure. In this context, air quality sensor systems (AQSSs) offer significant potential to enhance personal exposure assessment.

View Article and Find Full Text PDF

Conventional air quality monitoring has been traditionally carried out in a few fixed places with expensive measuring equipment. This results in sparse spatial air quality data, which do not represent the real air quality of an entire area, e.g.

View Article and Find Full Text PDF

Lift-off processing is a common method of pattern transfer for different nanofabrication applications. With the emergence of chemically amplified and semi-amplified resist systems, the possibilities for pattern definition via electron beam lithography has been widened. We report a reliable and simple lift-off process for dense nanostructured pattern in CSAR62.

View Article and Find Full Text PDF

X-ray zone plates made from gold are common optical components used in X-ray imaging experiments. These nanostructures are normally fabricated using a combination of electron-beam lithography and gold electroplating with cyanide gold baths. In this study, we present a gold electroplating process in a miniaturized gold-suplphite bath.

View Article and Find Full Text PDF

High-aspect ratio silicon (Si) nanostructures are important for many applications. Metal-assisted chemical etching (MACE) is a wet-chemical method used for the fabrication of nanostructured Si. Two main challenges exist with etching Si structures in the nanometer range with MACE: keeping mechanical stability at high aspect ratios and maintaining a vertical etching profile.

View Article and Find Full Text PDF

NanoMAX is the first hard X-ray nanoprobe beamline at the MAX IV laboratory. It utilizes the unique properties of the world's first operational multi-bend achromat storage ring to provide an intense and coherent focused beam for experiments with several methods. In this paper we present the beamline optics design in detail, show the performance figures, and give an overview of the surrounding infrastructure and the operational diffraction endstation.

View Article and Find Full Text PDF

Over the last decade, manufacturers have come forth with cost-effective sensors for measuring ambient and indoor particulate matter concentration. What these sensors make up for in cost efficiency, they lack in reliability of the measured data due to their sensitivities to temperature and relative humidity. These weaknesses are especially evident when it comes to portable or mobile measurement setups.

View Article and Find Full Text PDF

Air pollution in urban areas is a huge concern that demands an efficient air quality control to ensure health quality standards. The hotspots can be located by increasing spatial distribution of ambient air quality monitoring for which the low-cost sensors can be used. However, it is well-known that many factors influence their results.

View Article and Find Full Text PDF

Using low-cost gas sensors for air quality monitoring promises cost effective and convenient measurement systems. Nevertheless, the results obtained have a questionable quality due to different factors that can affect sensor performance. The most discussed ones are relative humidity and air temperature.

View Article and Find Full Text PDF

Zone plates are diffractive optics commonly used in X-ray microscopes. Here, we present a wet-chemical approach for fabricating high aspect ratio Pd/Si zone plate optics aimed at the hard X-ray regime. A Si zone plate mold is fabricated via metal-assisted chemical etching (MACE) and further metalized with Pd via electroless deposition (ELD).

View Article and Find Full Text PDF

The NanoMAX hard X-ray nanoprobe is the first beamline to take full advantage of the diffraction-limited storage ring at the MAX IV synchrotron and delivers a high coherent photon flux for applications in diffraction and imaging. Here, we characterize its coherent and focused beam using ptychographic analysis. We derive beam profiles in the energy range 6-22 keV and estimate the coherent flux based on a probe mode decomposition approach.

View Article and Find Full Text PDF

Metal-assisted chemical etching (MACE) reaction parameters were investigated for the fabrication of specially designed silicon-based X-ray zone plate nanostructures using a gold catalyst pattern and etching solutions composed of HF and HO. Etching depth, zone verticality and zone roughness were studied as a function of etching solution composition, temperature and processing time. Homogeneous, vertical etching with increasing depth is observed at increasing HO concentrations and elevated processing temperatures, implying a balance in the hole injection and silica dissolution kinetics at the gold-silicon interface.

View Article and Find Full Text PDF

An in situ/operando flow cell for transmission mode X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), and combined XAS/XRD measurements in a single experiment under the extreme conditions of two-step solar thermochemical looping for the dissociation of water and/or carbon dioxide was developed. The apparatus exposes materials to relevant conditions of both the auto-reduction and the oxidation sub-steps of the thermochemical cycle at ambient temperature up to 1773 K and enables determination of the composition of the effluent gases by online quadrupole mass spectrometry. The cell is based on a tube-in-tube design and is heated by means of a focusing infrared furnace.

View Article and Find Full Text PDF

We present a Moiré method that can be used to investigate positional instabilities in a scanning hard x-ray microscope with nanometer precision. The development of diffraction-limited storage rings offering highly-brilliant synchrotron radiation and improvements of nanofocusing x-ray optics paves the way towards 3D nanotomography with 10 nm resolution or below. However, this trend demands improved designs of x-ray microscope instruments which should offer few-nm beam stabilities with respect to the sample.

View Article and Find Full Text PDF

The field of three-dimensional multi-modal X-ray nanoimaging relies not only on high-brilliance X-rays but also on high-precision mechanics and position metrology. Currently available state-of-the-art linear and rotary drives can provide 3D position accuracy within tens to hundreds of nm, which is often insufficient for high resolution imaging with nanofocused X-ray beams. Motion errors are especially troublesome in the case of rotation drives and their correction is more complicated and relies on the metrology grade reference objects.

View Article and Find Full Text PDF

Due to their short wavelength, X-rays can in principle be focused down to a few nanometres and below. At the same time, it is this short wavelength that puts stringent requirements on X-ray optics and their metrology. Both are limited by today's technology.

View Article and Find Full Text PDF

X-ray absorption spectroscopy was used to characterise ceria-based materials under realistic conditions present in a reactor for solar thermochemical two-step water and carbon dioxide splitting. A setup suitable for in situ measurements in transmission mode at the cerium K edge from room temperature up to 1773 K is presented. Time-resolved X-ray absorption near-edge structure (XANES) data, collected for a 10 mol% hafnium-doped ceria sample (Ce0.

View Article and Find Full Text PDF

In water-window soft x-ray microscopy the studied object is typically larger than the depth of focus and the sample illumination is often partially coherent. This blurs out-of-focus features and may introduce considerable fringing. Understanding the influence of these phenomena on the image formation is therefore important when interpreting experimental data.

View Article and Find Full Text PDF

A Ronchi interferometer for hard X-rays is reported in order to characterize the performance of the nanofocusing optics as well as the beamline stability. Characteristic interference fringes yield qualitative data on present aberrations in the optics. Moreover, the visibility of the fringes on the detector gives information on the degree of spatial coherence in the beamline.

View Article and Find Full Text PDF

Efficient heat transfer of concentrated solar energy and rapid chemical kinetics are desired characteristics of solar thermochemical redox cycles for splitting CO2. We have fabricated reticulated porous ceramic (foam-type) structures made of ceria with dual-scale porosity in the millimeter and micrometer ranges. The larger void size range, with dmean = 2.

View Article and Find Full Text PDF

Focusing hard x-ray free-electron laser radiation with extremely high fluence sets stringent demands on the x-ray optics. Any material placed in an intense x-ray beam is at risk of being damaged. Therefore, it is crucial to find the damage thresholds for focusing optics.

View Article and Find Full Text PDF

The emergence of hard X-ray free electron lasers (XFELs) enables new insights into many fields of science. These new sources provide short, highly intense, and coherent X-ray pulses. In a variety of scientific applications these pulses need to be strongly focused.

View Article and Find Full Text PDF

We demonstrate the use of the classical Ronchi test to characterize aberrations in focusing optics at a hard x-ray free-electron laser. A grating is placed close to the focus and the interference between the different orders after the grating is observed in the far field. Any aberrations in the beam or the optics will distort the interference fringes.

View Article and Find Full Text PDF

Soft-x-ray cryotomography allows quantitative and high-resolution three-dimensional imaging of intact unstained cells. To date, the method relies on synchrotron-radiation sources, which limits accessibility for researchers. Here we present a laboratory water-window microscope for cryotomography.

View Article and Find Full Text PDF