Publications by authors named "Ulrich Vogl"

Identifying the mode numbers in whispering-gallery mode resonators (WGMRs) is important for tailoring them to experimental needs. Here we report on a novel experimental mode analysis technique based on the combination of frequency analysis and far-field imaging for high mode numbers of large WGMRs. The radial mode numbers q and the angular mode numbers p = ℓ-m are identified and labeled via far-field imaging.

View Article and Find Full Text PDF

We demonstrate high atomic mercury vapor pressure in a kagomé-style hollow-core photonic crystal fiber at room temperature. After a few days of exposure to mercury vapor the fiber is homogeneously filled and the optical depth achieved remains constant. With incoherent optical pumping from the ground state we achieve an optical depth of 114 at the 6(3)P(2) - 6(3)D(3) transition, corresponding to an atomic mercury number density of 6 × 10(10) cm(-3).

View Article and Find Full Text PDF

We report the experimental demonstration of the superluminal propagation of multi-spatial-mode images via four-wave mixing in hot atomic vapor, in which all spatial sub-regions propagate with negative group velocities. We investigate the spatial mode properties and temporal reshaping of the fast light images, and show large relative pulse peak advancements of up to 64 % of the input pulse width. The degree of temporal reshaping is quantified and increases as the relative pulse peak advancement increases.

View Article and Find Full Text PDF

We report on the four-wave mixing of superluminal pulses, in which both the injected and generated pulses involved in the process propagate with negative group velocities. Generated pulses with negative group velocities of up to v(g)=-1/880c are demonstrated, corresponding to the generated pulse's peak exiting the 1.7 cm long medium ≈50 ns earlier than if it had propagated at the speed of light in vacuum, c.

View Article and Find Full Text PDF

The general idea that optical radiation may cool matter was put forward 80 years ago. Doppler cooling of dilute atomic gases is an extremely successful application of this concept. More recently, anti-Stokes cooling in multilevel systems has been explored, culminating in the optical refrigeration of solids.

View Article and Find Full Text PDF