Therapeutic proteins are commonly conjugated with polymers to modulate their pharmacokinetics but often lack a description of the polymer-protein interaction. We deployed limited proteolysis mass spectrometry (LiP-MS) to reveal the interaction of polyethylene glycol (PEG) and PEG alternative polymers with interferon-α2a (IFN). Target conjugates were digested with the specific protease trypsin and a "heavy" N-IFN wild type (IFN-WT) for time-resolved quantification of the cleavage dynamics.
View Article and Find Full Text PDFThe cyclooctyne-functionalized alcohol (1R,8S,9S)-bicyclo-[6.1.0]non-4-yn-9-ylmethanol (BCN-OH) is applied as initiator for the organo-catalyzed ring-opening polymerization (ROP) of morpholine-2,5-diones based on the l-amino acids valine, isoleucine, and phenylalanine.
View Article and Find Full Text PDFJ Colloid Interface Sci
February 2025
The construction of ultrathin membranes from linearly aligned π-electron systems is advantageous for targeted energy, charge, or mass transfer. The Langmuir-Blodgett (LB) technique enables the creation of such membranes, especially with amphiphilic π-electron systems. However, these systems often aggregate, forming rigid Langmuir monolayers with defects or holes.
View Article and Find Full Text PDFIn this contribution, the divergent modular synthesis of photoredox-active dyads, triads and a tetrad descending from one ligand precursor is presented by combining "chemistry-on-the-ligand", stepwise complexation and "chemistry-on-the-complex" with minimal synthetic efforts. In the final step, Pd-mediated borylation and subsequent Suzuki-Miyaura cross-coupling was employed to introduce the different (multi)donor moieties at the preassembled P-A dyad subunit. The (spectro-)electrochemical data revealed preserved redox properties of the subunits and minimal driving force for oxidative quenching by the naphthalene diimide-based (NDI) acceptor and, thus, high-energy charge separated (CS) states.
View Article and Find Full Text PDFPolymer-based batteries represent a promising candidate for next-generation batteries due to their high power densities, decent cyclability, and environmentally friendly synthesis. However, their performance essentially depends on the complex multiscale morphology of their electrodes, which can significantly affect the transport of ions and electrons within the electrode structure. In this paper, we present a comprehensive investigation of the complex relationship between the three-dimensional (3D) morphology of polymer-based battery electrodes and their effective transport properties.
View Article and Find Full Text PDFA library of degradable poly(2-alkyl-2-oxazoline) analogues (dPOx) with different length of the alkyl substituents was characterized in detail by gradient elution liquid chromatography. The hydrophobicity increased with increased side chain length as confirmed by a hydrophobicity row, established by reversed-phase liquid chromatography. Those dPOx were cytocompatible and formed colloidally stable nanoparticle (NP) formulations with positive zeta potential.
View Article and Find Full Text PDFApplication of redox-active polymers (RAPs) in redox flow batteries (RFBs) can potentially reduce the stack cost through substitution of costly ion-exchange membranes by cheap size-exclusion membranes. However, intermolecular interactions of polymer molecules, , entanglements, particularly in concentrated solutions, result in relatively high electrolyte viscosities. Furthermore, the large size and limited mobility of polymers lead to slow diffusion and more sluggish heterogeneous electron transfer rates compared to quickly diffusing small molecules.
View Article and Find Full Text PDFDue to the increasing challenges posed by the growing immunity to poly(ethylene glycol) (PEG), there is growing interest in innovative polymer-based materials as viable alternatives. In this study, the advantages of lipids and polymers are combined to allow efficient and rapid cytoplasmic drug delivery. Specifically, poly(2-methyl-2-oxazoline) is modified with a cholesteryl hemisuccinate group as a lipid anchor (CHEMSPOx).
View Article and Find Full Text PDFHypothesis: Host rock weathering and incipient pedogenesis result in the exposition of minerals, e.g., clay minerals in sedimentary limestones.
View Article and Find Full Text PDFCryogels are polymeric materials with a sponge-like microstructure and have attracted significant attention in recent decades. Research has focused on their composition, fabrication techniques, characterization methods as well as potential or existing fields of applications. The use of functional precursors or functionalizing ligands enables the preparation of cryogels with desired properties such as biocompatibility or responsivity.
View Article and Find Full Text PDFPolyanions can internalize into cells via endocytosis without any cell disruption and are therefore interesting materials for biomedical applications. In this study, amino-acid-derived polyanions with different alkyl side-chains are synthesized via postpolymerization modification of poly(pentafluorophenyl acrylate), which is synthesized via reversible addition-fragmentation chain-transfer (RAFT) polymerization, to obtain polyanions with tailored hydrophobicity and alkyl branching. The success of the reaction is verified by size-exclusion chromatography, NMR spectroscopy, and infrared spectroscopy.
View Article and Find Full Text PDFThe urgent need for sustainable alternatives to fossil fuels in the transportation sector is driving research into novel energy carriers that can meet the high energy density requirements of heavy-duty vehicles without exacerbating the climate change. This concept article examines the synthesis, mechanisms, and challenges associated with oxymethylene ethers (OMEs), a promising class of synthetic fuels potentially derived from carbon dioxide and hydrogen. We highlight the importance of OMEs in the transition towards non-fossil energy sources due to their compatibility with the existing Diesel infrastructure and their cleaner combustion profile.
View Article and Find Full Text PDFLiposome-based technologies derived from lipids and polymers (, PEGylated liposomes) have been recognized because of their applications in nanomedicine. However, since such systems represent myriad challenges and may promote immune responses, investigation of new biomaterials is mandatory. Here, we report on a biophysical investigation of liposomes decorated with bioconjugated copolymers in the presence (or absence) of amantadine (an antiviral medication).
View Article and Find Full Text PDFDual-ion batteries (DIBs) represent a promising alternative for lithium ion batteries (LIBs) for various niche applications. DIBs with polymer-based active materials, here poly(2,2,6,6-tetramethylpiperidinyl-N-oxyl methacrylate) (PTMA), are of particular interest for high power applications, though they require appropriate electrolyte formulations. As the anion mobility plays a crucial role in transport kinetics, Li salts are varied using the well-dissociating solvent γ-butyrolactone (GBL).
View Article and Find Full Text PDFinline-nuclear magnetic resonance measurements, the homogeneously catalyzed poly(oxymethylene dimethyl ether) fuel synthesis using trioxane and dimethoxy methane is investigated. Besides the Brønsted acid (BA) catalyst triflic acid (TfOH) different metal halides are studied as Lewis-acidic (LA) catalysts. Among the used LAs, MgCl, the weakest based on electronegativity, reveals the highest catalytical activity.
View Article and Find Full Text PDFTo supply chemical structures of polymers for machine learning applications, decoding is necessary. Here, we present a protocol for generating polymer fingerprints (PFPs), which are representations of molecular structures, using a polymer-specific decoder. We outline steps for downloading, installing, and basic application of the software.
View Article and Find Full Text PDFHomometallic titanium oxo clusters (TOC) are one of the most important groups of metal oxo clusters. In a previous article, TOC structures with carboxylato and phosphonato ligands were reviewed and categorized. This work is now extended to clusters with other ligands.
View Article and Find Full Text PDF1,4-Bis(iodomethyl)benzene and 1,3,5-tris(iodomethyl)benzene were used as initiators for the cationic ring-opening polymerization (CROP) of 2-ethyl-2-oxazoline (EtOx) and its copolymerization with -butyl (3-(4,5-dihydrooxazol-2-yl)propyl)carbamate (BocOx) or methyl 3-(4,5-dihydrooxazol-2-yl)propanoate (MestOx). Kinetic studies confirmed the applicability of these initiators. Termination with suitable nucleophiles resulted in two- and three-armed cross-linkers featuring acrylate, methacrylate, piperazine-acrylamide, and piperazine-methacrylamide as polymerizable ω-end groups.
View Article and Find Full Text PDFInorganic photoacids and photobases comprising of photoactive transition metal complexes (TMCs) offer the ability to modulate proton transfer reactions through light irradiation, while utilizing the excellent optical properties of the latter. This provides a powerful tool for precise control over chemical reactions and processes, with implications for both fundamental science and practical applications. In this contribution, we present a novel molecular architecture amending an Fe-NHC complex with a pendant quinoline, as a prototypical photobase, as a representative earth-abundant TMC based inorganic photobase.
View Article and Find Full Text PDFPolymeric nanoparticles (PNPs) are frequently researched and used in drug delivery. The degradation of PNPs is highly dependent on various properties, such as polymer chemical structure, size, crystallinity, and melting temperature. Hence, a precise understanding of PNP degradation behavior is essential for optimizing the system.
View Article and Find Full Text PDFHybrid nanoparticles (HNPs) were designed by combining a PLGA core with a lipid shell that incorporated PEG-Lipid conjugates with various functionalities (-RGD, -cRGD, -NH, and -COOH) to create targeted drug delivery systems. Loaded with a neutral lipid orange dye, the HNPs were extensively characterized using various techniques and investigated for their uptake in human monocyte-derived macrophages (MDMs) using FC and CLSM. Moreover, the best-performing HNPs (i.
View Article and Find Full Text PDFIn this work, we present a concise modular assembly strategy using one universal heteroleptic 2,6-di(quinolin-8-yl)pyridine-based ruthenium(II) complex as a starting building block. Extending the concept from established ligand modifications and subsequent complexation (), the later appearing chemistry-on-the-complex methodology was used for late-stage syntheses, , assembling discrete building blocks to molecular architectures (here: dyad and triads). We focused on Suzuki-Miyaura and Sonogashira cross-couplings as two of the best-known C-C bond forming reactions.
View Article and Find Full Text PDFHypothesis: There is a lack of understanding of the interplay between the copolymer composition profile and thermal transition observed in aqueous solutions of N-isopropyl acrylamide (NIPAM) copolymers, as well as the correlation between this transition and the formation and structure of copolymer self-assemblies.
Experiments: For this purpose, we investigated the response of five copolymers with the same molar mass and chemical composition, but with different composition profile in aqueous solution against temperature. Using complementary analytical techniques, we probed structural properties at different length scales, from the molecular scale with Nuclear Magnetic Resonance (NMR) to the colloidal scale with Dynamic Light Scattering (DLS) and Small Angle Neutron Scattering (SANS).