Flavonoids exert a wide variety of biological functions that are highly attractive for the pharmaceutical and healthcare industries. However, their application is often limited by low water solubility and poor bioavailability, which can generally be relieved through glycosylation. Glycosyltransferase C (GtfC), a metagenome-derived, bacterial glycosyltransferase, was used to produce novel and rare rhamnosides of various flavonoids, including chrysin, diosmetin, biochanin A, and hesperetin.
View Article and Find Full Text PDFGlycosyltransferases offer the opportunity to glycosylate a variety of substrates including health beneficial molecules like flavonoids in a regiospecific manner. Flavonoids are plant secondary metabolites that have antimicrobial, antioxidative, and health beneficial effects. Glycosylation often has impact on these properties and furthermore enhances the water solubility, the stability, and the bioavailability of the molecules.
View Article and Find Full Text PDFA phylogenetic and metagenomic study of elephant feces samples (derived from a three-weeks-old and a six-years-old Asian elephant) was conducted in order to describe the microbiota inhabiting this large land-living animal. The microbial diversity was examined via 16S rRNA gene analysis. We generated more than 44,000 GS-FLX+454 reads for each animal.
View Article and Find Full Text PDFGeobacillus sp. strain GHH01 was isolated during a screening for producers of extracellular thermostable lipases. The completely sequenced and annotated 3.
View Article and Find Full Text PDFCellulose is an important renewable resource for the production of bioethanol and other valuable compounds. Several ionic liquids (ILs) have been described to dissolve water-insoluble cellulose and/or wood. Therefore, ILs would provide a suitable reaction medium for the enzymatic hydrolysis of cellulose if cellulases were active and stable in the presence of high IL concentrations.
View Article and Find Full Text PDF