Publications by authors named "Ulrich Pehl"

Radiotherapy and chemical DNA-damaging agents are among the most widely used classes of cancer therapeutics today. Double-strand breaks (DSB) induced by many of these treatments are lethal to cancer cells if left unrepaired. Ataxia telangiectasia-mutated (ATM) kinase plays a key role in the DNA damage response by driving DSB repair and cell-cycle checkpoints to protect cancer cells.

View Article and Find Full Text PDF

NIMA-related kinase 1 (Nek1) has lately garnered attention for its widespread function in ciliogenesis, apoptosis, and the DNA-damage response. Despite its involvement in various diseases and its potential as a cancer drug target, no directed medicinal chemistry efforts toward inhibitors against this dark kinase are published. Here, we report the structure-guided design of a potent small-molecule Nek1 inhibitor, starting from a scaffold identified by kinase cross-screening analysis.

View Article and Find Full Text PDF

Physical and chemical DNA-damaging agents are used widely in the treatment of cancer. Double-strand break (DSB) lesions in DNA are the most deleterious form of damage and, if left unrepaired, can effectively kill cancer cells. DNA-dependent protein kinase (DNA-PK) is a critical component of nonhomologous end joining (NHEJ), one of the two major pathways for DSB repair.

View Article and Find Full Text PDF

Mass spectrometry (MS) is known for its label-free detection of substrates and products from a variety of enzyme reactions. Recent hardware improvements have increased interest in the use of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS for high-throughput drug discovery. Despite interest in this technology, several challenges remain and must be overcome before MALDI-MS can be integrated as an automated "in-line reader" for high-throughput drug discovery.

View Article and Find Full Text PDF

In a high-throughput screening campaign for c-Met kinase inhibitors, a thiadiazinone derivative with a carbamate group was identified as a potent in vitro inhibitor. Subsequent optimization guided by c-Met-inhibitor X-ray structures furnished new compound classes with excellent in vitro and in vivo profiles. The thiadiazinone ring of the HTS hit was first replaced by a pyridazinone followed by an exchange of the carbamate hinge binder with a 1,5-disubstituted pyrimidine.

View Article and Find Full Text PDF

Purpose: The mesenchymal-epithelial transition factor (c-Met) receptor, also known as hepatocyte growth factor receptor (HGFR), controls morphogenesis, a process that is physiologically required for embryonic development and tissue repair. Aberrant c-Met activation is associated with a variety of human malignancies including cancers of the lung, kidney, stomach, liver, and brain. In this study, we investigated the properties of two novel compounds developed to selectively inhibit the c-Met receptor in antitumor therapeutic interventions.

View Article and Find Full Text PDF

Vesicular V-ATPase (V-type H+-ATPase) and the plasma membrane-bound Na+/K+-ATPase are essential for the cycling of neurotransmitters at the synapse, but direct functional studies on their action in native surroundings are limited due to the poor accessibility via standard electrophysiological equipment. We performed SSM (solid supported membrane)-based electrophysiological analyses of synaptic vesicles and plasma membranes prepared from rat brains by sucrose-gradient fractionation. Acidification experiments revealed V-ATPase activity in fractions containing the vesicles but not in the plasma membrane fractions.

View Article and Find Full Text PDF

The sphenopalatine ganglia (SPG) receive their preganglionic innervation from the ventro-lateral reticular formation and nuclei of the caudal pons, and are involved in parasympathetic control of cranial glandular and vascular components including the blood supply to specific brain areas. In 53% of all SPG neurons, a particular member (MOL2.3) of the odorant receptor superfamily is co-expressed with green fluorescent protein (GFP) in MOL2.

View Article and Find Full Text PDF

Mammalian Staufen2 (Stau2) is a member of the double-stranded RNA-binding protein family. Its expression is largely restricted to the brain. It is thought to play a role in the delivery of RNA to dendrites of polarized neurons.

View Article and Find Full Text PDF

As numerous diseases have been shown to be related to dysfunction of ion channels and neurotransmitter receptors and to affect regulatory pathways, ion channels have attracted increasing attention as a target class for drug discovery. The concomitant demand of the pharmaceutical industry for adequate electrophysiological methods to investigate drug effects on specific ion channels in secondary and safety screening has resulted in the development of electrophysiological instrumentation that allows automated monitoring of ion channel function with a higher throughput. Here we tested a fully automated screening system based on the Xenopus laevis oocyte expression system.

View Article and Find Full Text PDF

In guinea pigs, dose-dependent febrile responses can be induced by injection of a high (100 micro g/kg) or low (10 micro g/kg) dose of bacterial lipopolysaccharide (LPS) into artificial subcutaneously implanted Teflon chambers. In this fever model, LPS does not enter the systemic circulation from the site of localized tissue inflammation in considerable amounts but causes a local induction of the proinflammatory cytokines tumor necrosis factor (TNF) and interleukin-6 (IL-6), which can be measured in lavage fluid collected from the chamber area. Only in response to the high LPS dose, small traces of TNF are measurable in blood plasma.

View Article and Find Full Text PDF

Interleukin-6 (IL-6) is regarded as an endogenous mediator of lipopolysaccharide (LPS)-induced fever. IL-6 is thought to act on the brain at sites that lack a blood-brain barrier, the circumventricular organs (CVOs). Cells that are activated by IL-6 respond with nuclear translocation of the signal transducer and activator of transcription 3 molecule (STAT3) and can be detected by immunohistochemistry.

View Article and Find Full Text PDF

Certain members of the olfactory receptor superfamily appear to be expressed not only in chemosensory neurons of the nasal epithelium. Analyzing the transgenic mouse line MOL2.3-IGITL, the olfactory receptor subtype MOL2.

View Article and Find Full Text PDF

Peripheral inflammatory stimuli result in the modification of a number of vital brain-controlled functions including the thermoregulatory set-point (induction of fever) and the activity of the hypothalamic-pituitary-adrenal (HPA) axis. We addressed the question of whether both of these components of the acute-phase response are induced by a common signal pathway. For this purpose we recorded body temperature (by remote radio-telemetry), HPA axis activity (circulating concentrations of cortisol by radio-immunoassay) and levels of the pro-inflammatory cytokines tumour necrosis factor and interleukin-6 (TNF, IL-6, using specific bioassays) in six groups of guinea-pigs.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: