The 2-aryl-2,3,5,6,7,8-hexahydro[1]benzothieno[2,3-d]pyrimidin-4(1H)-ones and 2-aryl-5,6,7,8-tetrahydro[1]benzothieno[2,3-d]pyrimidin-4(3H)-ones have been diversified by alkylation reactions, applying benzylchlorides and N-substituted 2-chloroacetamides as alkylating agents. Under the found uniform conditions the substitution direction does not depend on the structure of the alkylating agent and gives monoalkylated products in high yields with simple workup. The alkylation of the 2,3-dihydropyrimidin-4(1H)-one derivatives proceeds onto the N1-position; however, in the case of pyrimidin-4(3H)-ones the O-alkylated products are formed selectively.
View Article and Find Full Text PDFFormation and use of a nitrogen dianion for selective hydrazine alkylation is reported. The scope and limitations of a new method were demonstrated. The novel method provides fast and easy access to substituted hydrazines, which are widely used as drugs, pesticides, and precursors for a variety of compounds in organic synthesis.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
September 2007
(1)H and (13)C NMR spectra of two series of malononitrile-based merocyanines, which possess positive and negative solvatochromism have been in detail investigated in low polar chloroform and polar dimethyl sulfoxide (DMSO). Careful attribution of signals in spectra has been made with the help of two-dimensional NMR experiments (COSY, NOESY, HMBC, and HMQC). Hence, the dependence of merocyanines electronic structure on their chemical structure and solvent nature has been studied by this powerful method.
View Article and Find Full Text PDF